
Delphi Informant April 1996 1

ON THE COVER
20 Sharing Components — Cary Jensen, Ph.D.

Our DBNavigator column takes the cover this month to show how
multiple forms can share a common component. It’s easy with
Delphi 1.0, and even easier with Delphi 2.0. Dr Jensen presents
a step-by-step tutorial and provides us with a look at Delphi
2.0’s data module feature.

FEATURES
9 OP Tech — Dana Scott Kaufman

Streaming is a valuable Delphi programming technique, but is
unfortunately nearly undocumented. Thankfully, Mr Kaufman
gives us a clear and elegant implementation of streams for
writing and reading data to and from memo objects.

12 In Development — Craig L. Jones
Returning for Part II of his quality assurance discussion, Mr
Jones shows us how to encapsulate test drivers and understand
the impact of QA on system design. His example, techniques
for handling “vague” dates, is also of interest.

24 Delphi C/S — Bill Todd
Sooner or later, you’ll upsize your desktop database Delphi
application to client/server. To prepare you for the move, Mr Todd
discusses some problems you’ll encounter, and their solutions.

27 Informant Spotlight — James Hofmann
The votes are in and you have spoken. Here are the results
of the Delphi Informant Reader’s Choice Awards for 1996.
Our own Mr Hofmann tabulates the results and announces
the winners.

32 Dynamic Delphi — Andrew Wozniewicz
Mr Wozniewicz continues his DLL series by rounding out the
collection of string-handling functions begun last month. He
also discusses exporting these custom functions for use across
your Windows applications.

36 Visual Programming — Walker Lipscomb
There are myriad ways to enhance the usability of Delphi
applications, and Mr Lipscomb shares many of them with his
Who Owes Whom? application. It’s full of tips, from
TTabbedNotebook to the lowly TLabel.

40 The API Calls — Karl Thompson
Mr Thompson presents his Walker utility which provides
information about currently loaded modules, running tasks,
memory allocations, and many other under-the-hood
aspects of Windows programming.

REVIEW
46 Light Lib VCLs — Product reviews by Douglas Horn

Mr Horn reports on two new tools, DFL Software’s Light Lib
Images and Light Lib Business.

DEPARTMENTS
2 Editorial
3 Delphi Tools
5 Newsline
49 File | New

Cover Art By: Tom McKeith

April 1996 — Volume 2, Number 4

Sharing
Components
Techniques for Delphi 1.0 and 2.0

A Word from the Editor
You may have noticed I did not write the editorial
(or “Symposium”) column of this or the March
issue of Delphi Informant. Instead, the work of
some prominent “guests” has been presented. Last
month’s “Symposium” was used to kick off Richard
Wagner’s “File | New” column which now appears
on the last page. In this month’s “Symposium,”
Borland’s Zack Urlocker reveals the origin of the
name “Delphi”. I hasten to note that Informant
Communications Group is not affiliated with
Borland International and that Borland has no con-
trol of the editorial content of any of our maga-
zines. Conspiracy buffs should instead revisit the
Zapruder film. — Jerry Coffey, Editor-in-Chief

Giving Birth

Symposium
One of the most fun things I’ve done in my career is to help build the “1.0” version of Delphi.
Okay, 2.0 was pretty fun too, but, as they say, there’s nothing quite like the first time.
To be honest, when we started building
Delphi 1.0, it was hard slogging. A lot of
the tools out there, like PowerBuilder,
SQL Windows, and Visual Basic, were
pretty good. Long before we even had a
prototype up and running, I was on the
road talking to developers to understand
the problems they were facing. To be hon-
est, most of them were pretty happy. I
remember particularly thinking that the
VB corporate users by and large were just
the happiest bunch of developers I’d ever
met. Heck, they were even having fun!

I remember one particular meeting
with about a dozen developers from a
major airline. They told a not uncommon
story of how a senior VP had decreed that
they would use Visual Basic after he pro-
totyped an application on a weekend. The
developer told me that he didn’t want to
have any association with — ugh —
Basic, but after trying it out for a while,
he changed his mind.

Another time, I was meeting with a
development team at a Wall Street foreign
exchange. They showed me this tremen-
dously impressive application for monitor-
ing currencies — written in SQL
Windows. It was beautiful. I thought, “Oh
no, another satisfied customer. Time to
move on.” So after a demonstration I asked
how they liked the application. His answer:
“It’s a dog.” The response time was simply
too long to even be considered for produc-
tion use. After all, Wall Street practically
defines the phrase “Time is money.”

I saw these scenarios repeated in meet-
ing after meeting, city after city. On the
surface, customers seemed pleased with
the productivity gains of “Rapid
Application Development” tools. But as I
delved further, I found the love affair
often came to a bitter end when they tried
to move from prototype to production. I
found lots of spaghetti code out there, and
DLLs written in C to make up for perfor-
mance bottlenecks in applications written
in PowerBuilder, SQL Windows, and VB.

It was some nine months into the two
years of the development of Delphi 1.0
before we showed it to potential cus-
tomers. There were two reasons for that.
First of all, Delphi was an underground
project that was truly secret. Heck, for the
first year we had more code names than
beta testers! Secondly, and perhaps more
importantly, I wanted to make sure we
understood customers problems rather
than simply gauging a reaction to a
demonstration. That way we could ensure
we were building the right product, rather
than fine tuning the wrong one.

When we finally started showing
Delphi to customers, the reaction was
dramatic. After all, we were solving the
problems they had told us about. Our
mantra: “Performance, Reuse, RAD, and
Scalability.” This helped us to not only
define the product, but to communicate
the benefits to the customer.

Oddly enough, one of the problems we
faced was how to name the product. As
Jerry Coffey pointed out in this column
[“Symposium,” Delphi Informant, January
1996], we were experimenting with all
kinds of names. Although we had early on
decided that “Pascal” should not be includ-
ed in the name since it wasn’t really mean-
ingful except to long-time fans, we really
hadn’t made much progress on the name
until a few months before its release.

Leading contenders included “Visual
AppBuilder” (luckily, it was taken)
“Application Architect” (too much like a
CASE tool), “Client Builder” (sounds like a
sales prospecting package), “Object Vision”
(ahh, we used that already, didn’t we?) and
just about every combination of the words
“Visual”, “Power”, “SQL”, “Application”,
“Object”, and “Builder” (“Visual Power
SQL Application Object Builder” anyone?)

As we were in the late stages of select-
ing a name, whenever I’d do a presenta-
tion, whether to potential customers, sales
reps, or third party vendors, I’d always ask
them what they thought of the proposed
names like “AppBuilder.” Invariably, the
response was lukewarm. Then they’d ask,
“Why don’t you just call it Delphi?” So in
the end, we did.

Danny Thorpe, then on the QA team,
now currently part of the R&D group,
had came up with the original code name
“Delphi” since it was to be a client/server
tool connecting to the likes of Oracle
among others. We had to come up with a
code name for our first beta test and
everyone felt that Delphi was acceptable.
We had many later code names for inter-
nal use, external use, different countries,
and at one point, I must admit, I random-
ly made up a new code name for every
presentation, so that if there ever was a
leak, we’d know from where it came.

Delphi 2.0 has come a long way since
then. Our original goal was to address a
few of the usability issues and also migrate
to a 32-bit compiler and take advantage of
platform features like OLE automation,
OCXes, etc. Along the way, we introduced
several major innovations like Data
Module Objects and Visual Form
Inheritance that increased code reuse.

The 32-bit compiler itself was actually
started way back when the original 16-bit
version of Delphi was started. At the time
it seemed like a safe bet that “Chicago”
would slip out of 1994 and that Windows
3.1 would still be a viable development
platform for Delphi 1.0. We were able to
have most of the VCL ported to 32-bits
and running with the new compiler prior
to the release of Delphi 1.0. So we were
quite confident that the architecture
would ensure compatibility with most
code from Delphi 1.0, assuming it wasn’t
dependent on 16-bit data assembler, data
structures, or unsupported API functions.

Although it’s a bit too early to
announce plans for the next version of
Delphi, we’re certainly working on a num-
ber of fronts to further reduce the amount
of code folks need to write, and make it
easier to support very large projects.

Zack Urlocker

Zack Urlocker is Director of Delphi Product
Management at Borland International. The
views expressed here are his own.
He can be reached on CompuServe
at 76217,1053.
Delphi Informant April 1996 2

New Delphi Book

Developing Custom Delphi Components
Ray Konopka

Edited by Jeff Duntemann
The Coriolis Group

ISBN: 1-883577-47-0
Price: US$39.99,
Canada $54.99
(500 pages; CD-ROM)
Phone: (800) 410-0192

Delphi
T O O L S

New Products
and Solutions
Component Building Tool for Delphi Updated

Potomac Document

Software, Inc., of
Washington, DC, has
released Component Create
2.0, a design tool and code
generator that enables Delphi
developers to produce new
components that can be
added to Delphi’s
Component Palette, and
dropped onto forms.

With version 2.0, develop-
ers can import container
components from form files
and create components that
“wrap around” forms, such
as a Windows common dia-
log box.

Developers can also make
component properties
(including inherited proper-
ties), invisible in Delphi’s
Object Inspector, generate
palette bitmaps, view Delphi
form (.DFM) files converted
into text, and select detailed
or normal commenting in the
generated Object Pascal code.
Component Create users

can develop and register
custom property editors
based on drop-down lists or
on a developer’s custom
Delphi forms. In addition,
version 2.0 features an
improved code editor that
can undo errors and add
smart tabbing.

A 32-bit version of
Component Create 2.0 is
expected by press time and
will be available to registered
users at no charge.

Price: US$179

Contact: Potomac Document Software,
Inc., PO Box 33146, Washington, DC
20033-0146
Phone: (800) 628-5524
Fax: (202) 244-9065
SCT Associates Releases New Delphi Reporting Component

SCT Associates, Inc. of Oak

Lawn, IL has released ACE
Reporter version 1.0 for
Delphi, a VCL report compo-
nent. With Ace Reporter you
can create and compile
reports into an .EXE file.

Ace Reporter works as a
container for report compo-
nents (not data compo-
nents), allowing you to place
multiple reports that share
open tables on one form.
For example, on a data entry
screen for a customer table,
there could be a button that
prints the current customer,
another button that lists all
customers, and a third but-
ton that prints an open
order report for that cus-
tomer. Ace Reporter also
allows you to minimize each
report and modify the form
at design time.

Ace Reporter features a
Fast button for selecting
multiple fields from tables
on a form. Once selected,
Ace Reporter generates
default headings that can
be edited, allows you to
select bands for the head-
ings and fields, and places
them on the report.

Using the Run button in
design mode, Ace Reporter
tests the non-code portion of
the report without building
the application. You can run
the report from design mode,
but features relying on code
(expression variables, events,
etc.) will need to be tested
after building the application.

ACE Reporter comes with
an online help file and a
Delphi .KWF file (for inte-
grating it into Delphi’s
IDE), and a free upgrade to
the Delphi 2.0-compatible
version and source code.

A free trial version of ACE
Reporter is available for
downloading from the Delphi
and Informant CompuServe
forums, and SCT’s and
Informant’s Web Sites, file
name: ACETRIAL.EXE.

Price: US$245, including a 30-day
money-back guarantee.

Contact: SCT Associates, Inc.,
9221 S. Kilpatrick Ave., Oak Lawn,
IL 60453-1813
Phone: (708) 425-0205
Fax: (708) 422-3877
E-Mail: CIS: 73766,1224
Web Site: http://ourworld.compu-
serve.com/homepages/sct
Delphi Informant April 1996 3

Starfish Releases EarthTime
Starfish Software, Inc. has posted
EarthTime, a plug-in for Netscape
Navigator 2.0, for developers to
download and evaluate. With the

EarthTime plug-in, Netscape
Navigator users can check the time
anywhere in the world without leav-
ing their browsers. EarthTime is a

component of Sidekick 95, and runs
on Windows 95 and Windows NT.

The EarthTime plug-in enables
users to schedule appointments,

conference calls, and chat sessions
with participants in multiple time

zones. It also allows users to simul-
taneously monitor the time and

date in eight cities of their choice.
For more information contact

Starfish Software at (800) 765-
7839, or visit their Web site at

http://www.starfishsoftware.com.

Delphi
T O O L S

New Products
and Solutions
Visual Components Updates to Include OCX Custom Controls

Visual Components, Inc.

of Lenexa, KS has upgraded
Formula One, First
Impression, and
VisualSpeller, as OLE
Custom Controls, and
announced plans to release a
new version of
VisualWriter, also as an
OLE custom control.

These Visual Components
upgrades include 16- and
32-bit versions, enabling
developers to build applica-
tions for Windows 95,
Windows NT, as well as
Windows 3.1.

Being OLE-enabled,
Formula One, First
Impression, VisualSpeller, and
VisualWriter can be used in
Delphi 1.0, Delphi 2.0,
Paradox 7, Visual C++ 4.0,
Access 95, Visual FoxPro,
Visual Basic 4.0, and other
environments that support the
OCX component standard.

Visual Components also
plans to release a new edi-
tion of the Visual
Developers Suite Deal. It
will include new versions of
Formula One, First
Impression, VisualWriter,
and VisualSpeller.

By subscribing to the new
Suite Subscription Plan,
developers can update and
maintain their Suite soft-
ware for an annual fee. The
plan features quarterly
updates to all software in
the Suite, and includes any
bug fixes and online releas-
es. The update CDs will be
mailed to subscription
holders automatically.

Price: Visual Developers Suite Deal,
US$299 (including online documenta-
tion); printed documentation for the
Suite, US$75; Visual Developers Suite
Deal Plus (includes the Suite and enroll-
ment in the Suite Subscription Plan),
US$429; Visual Developers Suite Deal
Gold (includes the Suite, enrollment in
the Suite Subscription Plan, and a one-
year Gold Support contract), US$499.
Developers that own the Visual
Developer Suite Deal of OCX compo-
nents may enroll in the Suite
Subscription Plan for US$179.

Contact: Visual Components, Inc.
15721 College Blvd.,
Lenexa, KS 66219
Phone: (800) 884-8665, or
(913) 599-6500
Fax: (913) 599-6597
BBS: (913) 599-6713
E-Mail: Internet: sales@-
visualcomp.com
Web Site: http://www.-
visualcomp.com
New VCL/DLL Provides a Financial Calculator

Odyssey Technologies, Inc.

of Cincinnati, OH has
released VCaLc, a native finan-
cial calculator VCL or DLL.

Developers can drop this
component into their
applications and allow their
users to do the financial
calculations used in most
companies.

VCaLc can calculate annuity
calculations, internal rates of
return and net present value
calculations, simple loans,
interest conversions (effective
to APR, APR to effective),
and currency conversions.

Users also have a “tape” capa-
bility like a desk calculator,
and may print the tape and
calculations. Standard calcula-
tor features, such as addition,
subtraction, and trigonometric
functions are also provided.

Price: US$49

Contact: Odyssey Technologies, Inc.,
PO Box 62733,
Cincinnati, OH 45262-0733
Phone: (800) 293-7893
Fax: (513) 777-8026
E-Mail: Internet: Odyssey@eos.net
Web Site: http://www2.eos.net/-
odyssey/
CompuServe: GO DELPHI
Delphi Informant April 1996 4

Visual Query Builder
Now Available

Borland is now selling the Visual
Query Builder separately for

US$79.95 plus tax and shipping.
Also sold as part of Delphi 1.0

Client/Server Edition, the tool enables
developers to generate SQL state-
ments using a visual metaphor. The

Visual Query Builder cannot be
deployed without royalties. For details

call Borland at (800) 453-3375.

News
L I N E

Apr i l 1996
Borland Outlines Phased Internet and Intranet Strategies

Scotts Valley, CA — Borland

International Inc. has out-
lined its short- and long-term
strategies for producing devel-
opment tools for building
Internet and intranet applica-
tions. Borland recently out-
lined its three-phase plan for
addressing the evolving needs
of PC LAN and intranet
developers, and displayed new
tools for building Java appli-
cations. The new tools are the
first components of Latte,
Borland’s native Java visual
development environment.
The current phase of

Borland’s strategy calls for
Internet-enabled versions of
Borland C++, Delphi, Visual
dBASE, and Paradox that will
provide customers with the
ability to develop new Web-
based applications and to
extend existing applications
with Web interfaces.

Borland’s Latte is expected to
accelerate the growth of the
Internet and Web as a plat-
form for corporate computing
solutions. An incremental
delivery of Latte is planned. It
began with the previously
announced add-on compo-
nents for Borland C++, and
will result in Delphi-like visual
tools for Java.

Latte will be an integrated
visual development toolset for
Java programmers developing
applications for the Internet
and intranets. In addition to
compilers and tools, the
development suite will offer
class libraries, RAD function-
ality, native database connec-
tivity, data aware controls,
and X-platform RDBMS
connections. Formal delivery
dates for Latte were not avail-
able at press time.

In the next phase, Borland
will introduce the InterBase
InterClient, connectivity soft-
ware for InterBase written in
Java for networked InterBase
databases. It will contain both
client and server components,
and will also eliminate the
complexity of remote database
access for Java developers.

In the last phase of this strat-
egy, Borland will migrate
intranet developers to a three-
tier environment that takes
advantage of cross-platform
and emerging protocol stan-
dards with a Borland applica-
tion server for remote Java
and database access.

Code-named Nexus, this
product will feature simple
clients, low-maintenance
client configuration, central-
ized business rules and vali-
dation, and database connec-
tivity. Anticipated delivery
dates were not made public,
although beta versions are
expected in the second half
of 1996.

In addition to building
client/server and Internet
tools around Java, Borland
sees long-term growth oppor-
tunities in the client/server
marketplace by developing
tools for building three-tier,
distributed applications using
the Web and intranets as the
operating platforms.

Borland also plans to sup-
port Microsoft’s Internet ini-
tiatives, including the forth-
coming Sweeper SDK, which
will be supported in Borland’s
existing Windows develop-
ment tools, such as Borland
C++ and Delphi.
Borland Focuses on Client/Server Market

Scotts Valley, CA — Borland

International Inc. recently
announced its strategy for
expanding in the client/serv-
er market. Borland President
and CEO Gary Wetsel said
they plan to strengthen their
position in the PC LAN
market by delivering desktop
tools that enhance productiv-
ity and shorten the develop-
ment cycle.

According to Paul Gross,
Borland’s senior vice presi-
dent of Research and
Development, the success of
Delphi Client/Server and its
InterBase server in the last
year has propelled the com-
pany’s client/server revenue
from approximately two per-
cent to more than 15 percent
of the company’s total rev-
enues. In addition, the com-
pany estimates that nine out
of 10 Delphi client/server
customers are new Borland
customers.

According to the company,
Borland will continue to focus
on the departmental/division-
al segment of the client/server
market where Delphi is posi-
tioned as a database-neutral
tool, co-existing with previous
enterprise database standards.
To support its client/server
business, Borland also plans to
enhance its service, sales, and
support organizations to
address the needs of these
customers.
Visigenic to Develop
ODBC Driver for
Borland’s InterBase
Scotts Valley, CA — Borland
International Inc. has
announced that Visigenic
Software will develop a set of
ODBC drivers for Borland’s
InterBase. This agreement will
allow ODBC-enabled appli-
cations and development tools
to access InterBase 4.
InterBase 4 is designed for
workgroup and departmental
computing environments, and
is available for Windows and
most UNIX platforms. The
Visigenic ODBC Drivers for
InterBase will support
Windows 95, Windows NT,
Sun Solaris, HP-UX, and
other UNIX platforms.

For more company informa-
tion, visit Visigenic’s Web site
at http://www.visigenic.com.
Delphi Informant April 1996 5

Spring Internet World 96
Keynote Line-Up
Includes Kahn

The Mecklermedia Corp. has
announced that Philippe Kahn,

co-founder and chairman of Starfish
Software, will be a keynote speaker
at their Spring Internet World 96,

scheduled for April 29-May 3,
1996 at the San Jose Convention

Center in San Jose, CA.
Additional keynote speakers include
Larry Ellison, chairman and CEO of
Oracle; Bill Gates, chairman and

CEO of Microsoft; Bill Joy, founder
and vice-president of research at

Sun Microsystems; and Tim
Krauskopf, co-founder and vice

president of research at Spyglass.
For more information visit

http://www.iworld.com/.

News
L I N E

Apr i l 1996
Computer Systems Advisers Bring Data Modeling to Delphi 2.0

Woodcliff, NJ — Borland

and Computer Systems
Advisers (CSA) have inte-
grated CSA’s Silverrun busi-
ness modeling software with
Delphi Client/Server Suite
2.0. The integration will
enable developers to gener-
ate data models supporting
heterogeneous database envi-
ronments.

Silverrun’s Relational Data
Modeler (RDM) module —
one of four tools in the
Silverrun Professional Series
— is incorporated into
Delphi Client/Server Suite
2.0 as an import/export facil-
ity. It enables Delphi devel-
opers to access RDBMSs
such as Oracle, InterBase,
Informix, and Sybase.

Silverrun-RDM provides the
architecture for launching
client/server applications based
on graphical models designed
with information stored in the

RDBMSs. The models will
then become incorporated
into a Delphi data dictionary.

Silverrun Professional is an
integrated business process
and data modeling workbench
for client/server development
on the Windows, Solaris,
OS/2, and Macintosh plat-
forms. Silverrun Professional
Series includes four modules:
Entity Relationship Expert,
Relational Data Modeler,
Business Process Modeler, and
Workgroup Repository
Manager.

For more information visit
Computer Systems Advisers’
Web site at http://www.silver-
run.com, or contact them by
phone at (201) 391-6500, or
e-mail: info@silverrun.com.
Borland’s New C++ 5.0 for Windows 95, Windows NT, and Java
“Borland’s New C++ 5.0 for Windows 95,
Windows NT, and Java”

continued on page 7
Scotts Valley, CA — Borland
has released Borland C++
5.0, an update to its object-
oriented C and C++ product.

Borland C++ 5.0 provides
developers with the tools
necessary to migrate to 32-
bit operating systems,
including: support for both
16- and 32-bit platforms; a
new version of Object-
Windows Library; and sup-
port for 16- and 32-bit VBX
controls.

Borland C++ 5.0 includes a
new native 32-bit hosted
development environment,
which lets developers target
multiple platforms, including
Windows 95, Windows NT,
Windows 3.1, and DOS,
from a single integrated
development environment.
Version 5.0 also includes a

multi-target project manager,
which lets developers build
16- and 32-bit applications
concurrently. A Windows 95
logo-certified product,
Borland C++ 5.0 is compati-
ble with most Windows 95
user-interface standards and
features, including OLE, reg-
istry, and long filenames.
Borland C++ 5.0 also includes
the complete 16-bit hosted
Borland C++ 4.52, for pro-
grammers using Windows 3.1.

Borland C++ 5.0 has a 32-
bit debugger with integrated
resource editing, including
new Windows 95-based con-
trols, multi-threaded and
multi-process debugging sup-
port, and an expanded dialog
editor that provides support
for Windows 95-based com-
mon controls.

For Internet development,
Borland C++ 5.0 includes
integrated development tools
for Java, including Sun’s Java
Development Kit (JDK). The
JDK works within Borland’s
integrated development envi-
ronment (IDE), and allows
programmers to develop
cross-platform code, which
can run on many popular
operating systems, including
Windows 95, Sun Solaris,
Macintosh, and others.

In addition, Borland C++
5.0 includes the Borland
Debugger for Java (the only
GUI debugger for Java writ-
ten in Java), as well as
AppExpert for Java-specific
applications and applets.

Borland also announced
the release of Borland C++
Development Suite, which
includes Borland C++ 5.0;
CodeGuard 32/16, a new
version of Borland’s auto-
mated bug detection and
diagnosis tool; PVCS Version
Manager; InstallShield
Express; and the new
AppAccelerator for Java, a
compiler that increases the
Delphi Informant April 1996 6

The Coriolis Group
Joins ITP Media Group

International Thomson
Publishing (ITP) announced

The Coriolis Group has
joined their ITP Media Group.

The ITP Media group now
includes Course Technology,

boyd & fraser, Ventana
Communications Group,
and The Coriolis Group.
The Coriolis Group will

remain based in Scottsdale,
AZ and will function as an

autonomous publishing
operation under The

Coriolis Group imprint. The
Coriolis Group’s Web site

can be accessed at
http://www.coriolis.com.

News
L I N E

Apr i l 1996
performance for Java appli-
cations and applets by up to
10 times. AppAccelerator
works with all Java applica-
tions and applets regardless
of the development tools
used to create them.

Borland C++ Development
Suite 5.0 is priced at
US$499.95, and Borland
C++ 5.0 is priced at
US$349.95. Current owners
of other Borland products
and owners of Microsoft
Visual Basic, Microsoft
Visual C++, or Watcom or
Symantec C or C++ prod-
ucts, can buy Borland C++
5.0 for US$249.95.

Upgrades will be provided
on CD-ROM and include
complete online documen-
tation. Diskettes and print-
ed documentation are avail-
able separately at an addi-
tional charge. For more
information, call Borland at
(800) 645-4559.

Borland’s New C++
5.0 for Windows 95,
Windows NT, and
Java (cont.)
Delphi 2.0 Information on the Internet

Scotts Valley, CA — Borland

International has released sev-
eral technical documents that
outline Delphi 2.0’s new fea-
tures. These include
D2_Q&A.ZIP, a question
and answer document that
addresses general questions;
D2_COMP.ZIP, a detailed
look at the inner workings of
the Delphi 2.0 compiler;
D2_DB.ZIP, a white paper
describing the client/server
database architecture of
Delphi Client/Server Suite
2.0; and DLP2BKS.ZIP, a list
of the Delphi 2.0 books cur-
rently in production.

All these documents are
available online. On
CompuServe type “GO DEL-
PHI”, or visit the Borland
FTP site at ftp.borland.com/-
pub/techinfo/techdocs/lan-
guage/delphi/gen/. You will
also find articles comparing
Delphi 1.0 with Visual Basic
and PowerBuilder, and more.

Borland also has a Web site
at http://www.borland.com,
and a BBS at (408) 431-5096.
For Delphi-specific technical
information visit the
http://www.borland.com/tech-
info/delphi/index.html page of
Borland Online.
Borland Ships New Paradox 7 Runtime, Client/Server, and Developer Tools

Scotts Valley, CA — Borland

International Inc. has
announced three new prod-
ucts in the Paradox 7 family
of database products:
Paradox 7 Runtime, Paradox
7 Client/Server, and Paradox
Developer Tools.

Paradox 7 Runtime allows
database developers to dis-
tribute their single-user or
PC LAN Paradox applica-
tions without requiring end-
users to have a copy of
Paradox 7 installed.

Additionally, Paradox 7
Runtime protects a develop-
er’s source-code, and doesn’t
require royalty or license fees
for distribution. Paradox 7
Runtime is priced at US$299
and bundles Stirling
Technologies’ InstallShield
product. Owners of previous
Runtime versions of Paradox
can upgrade for US$249.

Paradox 7 Client/Server fea-
tures development tools for
creating front-ends to existing
Oracle, Sybase, SQL Server,
InterBase, and Informix data-
base servers. The product
includes Paradox 7, a
client/server-enabled version
of Paradox 7 Runtime, unlim-
ited deployment licenses for
Borland’s new 32-bit SQL
Links, a single-user Local
InterBase Server, and Borland’s
Data Pump Expert. Paradox 7
Client/Server costs US$1,495.

For more information about
the Paradox 7 Runtime or
Paradox 7 Client/Server, call
Borland at (800) 233-2444.

Available at no charge to
members of Borland’s
Paradox Developer
Connections Program,
Paradox Developer Tools is
a series of add-on utilities
that make Paradox applica-
tion development easier and
more productive. Many of
these tools have been devel-
oped in ObjectPAL by the
Borland Paradox develop-
ment team. The first of
these utilities to be available
is ObjectSpy, an object-
based documentation add-
in that documents the com-
ponents of a Paradox appli-
cation. Future additions to
the Paradox Developer
Tools program will include
the source code for the
Experts in Paradox 7, and a
new Library Prototyping
Expert. For more informa-
tion about Paradox
Developer Tools and the
Paradox Developer
Connections Program, call
Borland at (800) 353-2211.
Delphi Developers Conference Set for May

Orange, CA — The Orange

County Delphi Users Group
will be sponsoring the
Southern California Delphi
Developers Conference May
4, 1996 at Chapman College
in Orange, CA. The event
will include tracks for begin-
ner through advanced
Delphi developers.

The conference costs
US$99. For more informa-
tion or to register, call (714)
855-9789, fax (714) 457-
9641, or e-mail drdelphi@-
mannatech.com.
Delphi Informant April 1996 7

News
L I N E

Apr i l 1996

Borland Announces
Premier Value Added

Partner Program
Borland has announced the
Premier Value Added Partner

Program, a new program target-
ing client/server system integrators

and consultants that provide
corporations and government

clients with applications, consult-
ing, and training services for

Borland’s client/server software
products (Delphi Client/Server,

InterBase, and ReportSmith).The
Premier Value Added Partner

Program’s annual fee includes
software, rebates, technical sup-
port, and marketing tools and

programs. Each partner must also
complete Borland sales and prod-

uct training. For more
information, contact Borland

at (408) 431-5117.
Borland Reports a Profit in Third Quarter Fiscal Results

Scotts Valley, CA — Borland

International Inc. announced
a net income of US$849
thousand, or US$.03 per
share, on revenues of
US$47.3 million for its third
fiscal quarter ending
December 31, 1995. These
results reflect the third con-
secutive quarter of profitabili-
ty since Borland restructured
its operations in January,
1995, and focused its strategy
on software developers. The
net income for the nine
months ending December 31,
1995 was US$6.3 million, or
US$.20 per share, on rev-
enues of US$152.3 million.

The company incurred a
net loss of US$22.9 mil-
lion, or US$.80 per share,
in the same quarter of the
previous fiscal year, on rev-
enues of US$48.1 million.
Included in this result is a
US$10 million gain associ-
ated with the sale of
Borland’s Quattro Pro
spreadsheet product line to
Novell, Inc.

In the nine months ended
December 31, 1994, net
income was US$38.8 million,
or US$1.21 per share, on rev-
enues of US$198.6 million.
Included in the previous year’s
results is a US$109.9 million
non-operating gain on the
sale of Quattro Pro, revenue
of US$24.5 million from the
sale of Paradox licenses to
Novell, and a one-time charge
for purchased technology of
US$16.2 million related to
the company’s acquisition of
ReportSmith. Excluding these
transactions, Borland would
have reported a pre-tax loss of
US$68.6 million in the nine
month period of the previous
fiscal year.
Java 1.0 Available for Download

Palo Alto, CA — JavaSoft,

the newly-formed operating
company of Sun Micro-
systems, Inc., has made the
Java 1.0 programming envi-
ronment available for down-
load at http://java.sun.com.
This release incorporates

the Java Applet Viewer for
running and testing applets,
the Java Compiler, a proto-
type debugger, and the Java
Virtual Machine to run Java-
based programs. Also includ-
ed are class libraries for
graphics, audio, animation,
and networking.

Java 1.0 is available for
Windows 95 and Windows
NT on Intel, Solaris, and
SPARC platforms. Java 1.0
for Mac OS 7.5 is expected
by the end of the first quarter
of 1996. In addition, ports to
other significant operating
systems are underway outside
of JavaSoft. For example,
IBM has announced plans to
build ports for Microsoft
Windows 3.1 and OS/2, and
OSF has announced plans to
build ports for additional ver-
sions of UNIX.

Java-based applications are
platform-independent; only
the Java Virtual Machine
needs to be ported to each
platform. It acts as an inter-
preter between an end-user’s
computer and the Java-based
application. An application
written in the Java environ-
ment can run anywhere, end-
ing the need for porting appli-
cations to multiple platforms.
The Java Virtual Machine is

currently available through
JavaSoft’s HotJava and
Netscape Navigator 2.0 Web
browsers, and will be available
in Oracle’s PowerBrowser and
Spyglass’ Mosaic browsers.
InstallShield Provides Software Deployment Toolkit for Borland C++

Schaumburg, IL —

InstallShield Corp. and
Borland have created a soft-
ware deployment toolkit,
InstallShield Express, for the
Borland C++ Development
Suite.

Borland will also work with
InstallShield to provide soft-
ware deployment solutions
for other Borland products,
such as Delphi 2.0, Paradox
7, and Visual dBASE.

InstallShield Express
Borland C++ Development
Suite 5.0 Edition is a custom
version of InstallShield
Express that integrates with
Borland C++ Development
Suite 5.0. It allows program-
mers to create installations
for Windows 95 and
Windows NT.

The new product features
InstallShield Objects, which
automate the installation of
ObjectWindows Library
5.0, Visual Database Tools,
and other technologies used
by the Borland C++
Development Suite.

It also enables developers
to specify product compo-
nents and files, set up pro-
gram folders and icons,
make system file and reg-
istry changes, and select
InstallShield Objects to add
third-party software com-
ponents.

InstallShield Express
Borland C++ Development
Suite 5.0 Edition assists in
creating installation programs
that know how to install
shared dynamic link libraries,
OCX controls, and the
Borland Database Engine on
the target system.

Borland C++ Development
Suite users may purchase
InstallShield Express
Professional from InstallShield
Corp.

For more information visit
Borland’s Web site at
http://www.borland.com.
Delphi Informant April 1996 8

Working in Streams
(without Getting Wet)
Using Streams to Read and Write Memo Field Data

OP Tech
Delphi / Object Pascal

By Dana Scott Kaufman
Memo fields are common in applications that need to store an indefinite
amount of character-based information in individual records in a data-

base. Although memo fields are widely used, Delphi contains no easy way
to import and export data from these fields. The DBMemo component is the
only ready-made control that can access a memo.
But what if you need to store and manage large
amounts of text, but don’t include a TDBMemo
object on any of your Delphi forms? For exam-
ple, I regularly store program configuration
data in string lists for easy manipulation at run
time. The program must be able to load or
store this information at any time.

Borland provides the means to perform these
tasks, but they are poorly documented. This
article will explain how to use streams to
import and export data from fields in a data-
base. Later, we’ll address using these tech-
niques with data stored on a SQL server, and
the benefits of using these methods. Code
examples are included that show how to read
and write a string list to a memo field.

Into the Stream
To accomplish these data import/export
feats, we must first become familiar with the
concept of streams. Streams allow applica-
tions to read and write data sequentially to
and from a medium that can store binary
data. The stream can store the data in memo-
ry, on disk, or on other devices.

The main strength of streams is that the actu-
al medium used is irrelevant. All streams work
the same, in that the same methods work on
memory blocks, individual files, etc. Streams
have two properties, size and position, that
denote the stream’s size in bytes and the cur-
rent position within the bytes. Streams also
provide methods for reading, writing, and
copying bytes into and out of the stream.
It may help to think of a stream as you
would magnetic audio tape. Sound is record-
ed sequentially on tape in much the same
way that data is stored in a stream. Con-
tinuing this metaphor, a tape counter is simi-
lar to the stream position property because it
indicates the current position on the tape. To
hear the sounds, or obtain data from the
stream, you must ensure you “rewind” the
position property back to where you want to
start, usually position 0 for the beginning.

BLOb Streams to the Rescue
The key to manipulating memo fields in
Object Pascal is the TBlobStream class. BLOb
streams provide an easy way to access or mod-
ify a memo field by allowing you to read or
write to the field as if it were a file or stream.

The Create constructor is used to link the
field to the BLOb stream. Here is its syntax:

constructor Create(Field : TBlobField;
Mode : TBlobStreamMode);

Create has two parameters. The first is a ref-
erence that points to the memo field to be
manipulated. The second specifies the read-
write mode with one of the TBlobStreamMode
constants: bmRead, bmWrite, or
bmReadWrite. As Delphi’s online documenta-
tion states: use bmRead to access an existing
memo field, bmWrite to clear the contents of
the field and assign a new value, and
bmReadWrite to modify an existing value.
After the BLOb stream is created, the data
Delphi Informant April 1996 9

Figure 1: The ListToMemo procedure.

procedure ListToMemo(DestTable: TTable;
DestField: string;
SourceList: TStringList);

var
BlobStream1: TBlobStream;

begin
BlobStream1 :=

TBlobStream.Create(TMemoField(
DestTable.FieldByName(DestField)),bmWrite);

try
BlobStream1.Write(SourceList.GetText^,

StrLen(SourceList.GetText));
finally

BlobStream1.Free;
end;

end;

Figure 2: The sample Memo I/O application.

Op Tech
can be accessed. To do this, we use the stream methods avail-
able to all classes derived from the TPersistent class. Note that
many of these objects contain stream calls that are not docu-
mented in Delphi’s online help.

MemoToList: Reading Memo Fields into Memory
First, we’ll discuss how to read data from a database into
memory where it can be readily used. Then we’ll go over the
steps needed to write data to a memo field in the database.

To read data into memory, we use the LoadFromStream pro-
cedure. Here is its syntax:

procedure LoadFromStream(Stream: TStream);

This will load data from the specified stream into the object.
The MemoToList procedure creates a BlobStream in read mode
and then pulls the contents of a memo field into a TStringList:

procedure MemoToList(SourceTable: TTable;
SourceField: string;
DestList: TStringList);

var
BlobStream1: TBlobStream;

begin
BlobStream := TBlobStream.Create(TMemoField(

SourceTable.FieldByName(SourceField)),bmRead);
DestList.LoadFromStream(BlobStream1);

end;

As you can see, MemoToList takes three parameters. The first
is a TTable that should be attached to the table and posi-
tioned on the record you want to read. The second is a
String containing the field name from the table to read, and
the third is the TStringList that will contain the text read
back from the memo field. In the Create constructor, we use
the TMemoField to inform the compiler that SourceField is
actually a memo field.

ListToMemo: Writing Memo Fields to a Table
Now that we can read data from the memo field, we must be
able to put data into it. As in the previous example, we have
to create a TBlobStream that references the field we want to
manipulate. This time, we’ll use bmWrite as the mode. This
will clear the field before the data is inserted. We then save
the text from the string list to the BLOb stream. The syntax
of the Write method is:

function Write(const Buffer ; Count : Longint) : Longint;

Write requires two parameters: Buffer, which is a block of memo-
ry that contains the string you want to write, and Count, which
is the number of characters (bytes) to be written. Write is a func-
tion and returns the number of characters that were written.

Figure 1 shows the source code for the ListToMemo proce-
dure. In our example, the text we want to write to the memo
is contained in a list. We can get a pointer to the memory
that contains the text by using the GetText function. This will
return the address in memory where the string starts.
Because the Write function requires the actual text as the Buffer
parameter, we attach a caret character (^) to the GetText call.
This instructs Delphi to use the actual string that GetText is
pointing to.

We also need to pass the size of the string. We do this by
using the StrLen function. StrLen takes a null-terminated
string as a parameter and returns the number of characters
contained in the string. So, we pass the text from the
TStringList we retrieve to the StrLen function by using the
GetText function again. The call to Write resembles this:

BlobStream1.Write(SourceList.GetText^,
StrLen(SourceList.GetText));

That’s it. You now have the code to read and write text to
and from memo fields in a database. For convenience, I
placed the MemoToList and ListToMemo procedures in a unit
called MemoList. When I need their functionality in a Delphi
form, I include the MemoList unit in the form’s uses clause.

This article is accompanied by the sample Memo I/O appli-
cation (see Figure 2) that uses these two routines. The form
contains two TMemo components (Memo1 and Memo2), two
TButtons (one to save and the other to load a button), and a
TTable.
Delphi Informant April 1996 10

Dana Kaufman is a Senior Consultant with Apogee Information Systems, Inc., a
Massachusetts-based consulting and development firm specializing exclusively in
Delphi and Paradox applications. He is a contributing technical editor for QUE on
their Delphi 2 products. Dana can be reached at (508) 481-1400 or via the
Internet at aisys@ix.netcom.com.

Op Tech
The Save Memo button writes the contents of Memo1 to a
memo field in a sample Paradox table using the ListToMemo
function. Memo controls have a Lines property that is a kind of
string list, allowing me to cast the Lines property to a TStringList
so I can properly call the ListToMemo method. The OnClick
method for the Save Memo button is similar to this:

procedure TForm1.SaveButtonClick(Sender: TObject);
begin

Table1.Open;
Table1.Edit;
ListToMemo(Table1,'MemoField',TStringList(Memo1.Lines));
Table1.Post;

end;

Also, notice we need to put the table into edit state before calling
the ListToMemo function. We can do this by using the table’s
Edit, Append, or Insert method before calling ListToMemo. Final-
ly, we must post the changed record after the ListToMemo call.
The call to MemoToList, the Load Memo button’s Click method,
looks similar to the ListToMemo call above. Remember the
TTable must be on the appropriate record that you want to read.

Conclusion
We have discussed getting data into and out of tables.
However, we haven’t addressed the types of tables that can be
used. The sample Memo I/O program uses a Paradox table to
store the data. The ListToMemo and MemoToList methods can
also be used on SQL server tables. I have successfully used
these routines on InterBase, Microsoft SQL Server, and
Sybase tables. There is no reason it shouldn’t work on other
database server types that are available through the Borland
Database Engine.

At first glance, streams can be a complex and confusing issue. To
make matters worse, there’s little to no documentation on this
extremely useful type of object. Once you understand their func-
tionality however, you will likely use them all the time. By using
the methods described above, you can add memo fields to all
your databases and not have to worry about how to fill them.

ListToMemo and MemoToList are extremely handy routines that
I use on most of my development projects. The same tech-
niques can be used to store and retrieve graphics, data points,
and even other objects — but that’s for another article. ∆

The Memotest project is available on the Delphi Informant
Works CD located in INFORM\96\APR\DI9604DK.
Delphi Informant April 1996 11

In Development
Delphi / Object Pascal

By Craig L. Jones

PQA: Part II
Practical Quality Assurance Techniques for Delphi
A s every programmer knows, much can go wrong with even the simplest
of programs. Worse yet, the number of possible problems grows geo-

metrically with the size of an application. The good news is that learning just
a little quality assurance (QA) savvy can go a long way towards heading off
disaster. There’s nothing mysterious about QA — just think of everything
that can go wrong and test for it. The trick is to eliminate the tedious aspects
by writing test drivers that automate as much of the testing as possible.
This is the second of three articles on assuring
the quality of Delphi programming projects.
This series is primarily directed towards Delphi
programmers and assumes no prior knowledge
on the subject of QA. Hopefully, programmers
who previously gave QA little thought will dis-
cover some enthusiasm for applying the tech-
niques presented here. These techniques are
quick to implement, easy to maintain, and
thereafter automatically reusable.

This installment will expand the QA tool kit
(introduced last month) to cover the testing
of more complicated procedures and object
methods. Facilities will be added for running
multiple test drivers consecutively (unattend-
ed) and using a comparison program to
check the results against an established base-
line. [For an introduction to the QA tool kit,
see Craig Jones’ article “PQA: Part I” in the
March 1996 Delphi Informant.]

A Quick Review
Last month, some general QA theory was
presented, along with how it applies to the
different stages of program development.
Eight types of testing were outlined:
1) requirements verification
2) design validation
3) unit
4) integration
5) user acceptance
6) alpha
7) beta
8) gamma
In addition, a tool kit was established for
performing unit testing — this was probably
the most important of the eight.

Unit testing is a matter of focusing on the sub-
processes contained within a program and test-
ing each individually. To introduce the subject,
a test driver was written to exercise a simple
function, showing how to consider four differ-
ent areas of concern: path coverage, boundary
conditions, performance, and regression.

The example function tested took one string
argument, a book title, and returned another
string that represented the title in a sortable
form. For example:

“A 3 Tier Solution”

would be converted to:

“THREE TIER SOLUTION, A”

The test driver called the function multiple
times, passing it a series of different titles and
checking the results with an “assertion tool.”

Once an automated test driver is written, it
can be executed quickly at any time to ensure
that the unit (still) works properly.

Expanding and Encapsulating the Tool Kit
Before proceeding, it would be prudent to bet-
ter organize the tool kit. For the sake of simplic-
ity, the tools were initially presented as a collec-
Delphi Informant April 1996 12

Figure 1:
Summary
of the QA
tool kit as
presented
in the first
part of
this series.

Figure 2: Summary of the new QA tool kit that is organized
around two objects: TQA (based on TObject) and TFormQALog
(based on TForm).

Object Element Description

TQA fileQALog File handle for writing the test
results to disk (as an ASCII .TXT
file).

sTestID 8-character test ID, used as the
name of the .TXT file.

FilePath Specifies the drive and/or sub-
directory to contain the test result
log files.

UseForm Set to True if the results will be
displayed on-screen using the
TFormQALog object.

UseFile Set to True if the results will be
written out to disk according to
the FilePath and sTestID fields
shown above.

Start Procedure called to start a new
test run, passing it an 8-character
string to identify the test.

Stop Procedure called to end a test run.

Log Procedure called to directly record
an entry in the log.

sAssert Procedure called to assert an
equality between two string values.

bAssert Procedure called to assert an
equality between two Boolean
values.

iAssert Procedure called to assert an
equality between two integer
values.

nAssert Procedure called to assert an
equality between two floating point
values.

TFormQALog memoQALog Memo component to display the
results of a test run.

btnQAOK OK button to clear the window
(hide the form).

Procedure Description

QAStart Procedure called to start a new
test run, passing it an 8-character
string to identify the test.

QALog Procedure called to directly
record an entry in the log.

QAsAssert Procedure called to assert an
equality between two string values.
tion of stand-alone functions (see Figure 1). A better way would
be to redefine those functions as the methods of an object. For
one thing, this allows for defining some data fields that the newer
methods need in common. Figure 2 shows this new organization.
The associated code is shown in Listing One on page 16.

A secondary object, a general-purpose form, has been defined
for displaying the results of any test run. The form simply
consists of a Memo component that displays test results, and
an OK button that closes it. With this generic form, the tester
no longer needs to create a specific form for the task (as in last
month’s article). Also, the various Assert methods have been
written to report their findings through the Log method. Log,
in turn, has been modified to optionally handle writing those
findings to a disk file in addition to, or instead of, the screen.
Encapsulating the Test Driver
When writing test driver code for testing an object’s methods,
a convenient place to store that test driver is within the object
itself as another method. Figure 3 shows the class definition
for a sample object, called TVagueDate (its code, Listing Two,
begins on page 17). This class definition includes a method,
SelfTest, that uses the new QA tool kit to exercise
TVagueDate’s other methods.

The TVagueDate object handles storing and processing
incomplete or non-specific dates. Such an object may be
found as part of a scheduling or contact management appli-
cation. TVagueDate allows dates to be specified with
unknown portions. For example, you may know when a per-
son celebrates a birthday (i.e. month and day), but not know
that person’s year of birth. Likewise, you may know the
month and year an event occurred, but not the specific day.

Figure 4 is a simplified form that is the front-end to a
contact management database using TVagueDate. The
birthday is stored in the database using a raw byte storage
field that is 7 bytes long (the size of the combined data
fields of the TVagueDate class). The form uses a display-
only calculated field to display a text representation of the
VagueDate birthday that is stored in the byte field (via
TVagueDate’s AsString property). In addition, a Specify

button allows the birthday to be entered or changed, via
the Vague Date Entry dialog box (see Figure 5).

Another database field of type Date is automatically filled
with a fully-specified approximation of the birthday using the
AsDateTime property of TVagueDate. The Birthday field is set
to read-only on the form so that the user is forced to properly
go through the Vague Date Entry dialog box to change it.

By entering records into the database and specifying vari-
ous birthdays, we can put the TVagueDate object through
its paces. Such manual testing, however, is tedious, incon-
sistent, and error prone. Thus, the form also features a
SelfTest button that calls TVagueDate’s SelfTest method. The
button is invisible when the application is not in test mode
(i.e. the compiler directive token QA_Mode is not defined,
as described in our first article).

The code in Figure 6 shows how TVagueDate’s SelfTest method
uses the AsString and AsDateTime properties (specifically their
read methods, GetString and GetDateTime). Figure 7 shows
the on-screen test results. So far, the only real difference
between this test driver and the one in last month’s article, is
that there are lines of code before each Assert call that are
needed to set up for the assertion check. Primarily, though, we
still are only verifying a function’s returned value.

Testing More Complicated Functions
Let’s move on to testing some more complicated functions where
the function’s result value is not the only thing affected. For
example, let’s say that the code changes the value of an object’s
property, the value of a global variable, or the contents of a data-
Delphi Informant April 1996 13

{$IFDEF QA_MODE}
procedure TVagueDate.SelfTest;
var

QA: TQA;
begin

QA := TQA.Create;
with QA do

begin
UseForm := TRUE;
FilePath := 'C:\QALOGS\';
UseFile := TRUE;
Start('VAGUEDT');
Log('','TVagueDate Self-Test');
Log('','--------------------');

InitBlank;
Year:=1996; Month:=4; Day:=1;
sAssert(AsString,'Apr 1st 1996');
nAssert(AsDateTime, EncodeDate(1996,4,1));
{ Unknown Day }
Year:=1996; Month:=4; Day:=0;
sAssert(AsString,'Apr 1996');
nAssert(AsDateTime, EncodeDate(1996,4,1));

{ Unknown Month & Day }
Year:=1996; Month:=0; Day:=0;
sAssert(AsString,'1996');
nAssert(AsDateTime, EncodeDate(1996,1,1));

{ Unknown Year }
Year:=0; Month:=4; Day:=2;
sAssert(AsString,'Apr 2nd');
nAssert(AsDateTime, EncodeDate(1996,4,2));
{ Additional tests here... }
Stop;

end;
QA.Free;

end;
{$ENDIF}

In Development

Figure 3: The class definition for TVagueDate. Note the SelfTest
method that is used as a test driver to exercise the other methods
of the object.

TVagueness = (vdOn, vdAbout, vdBefore, vdAfter);
TVagueDate = class(TObject)

private
iVagueness: TVagueness;
iMonth,iDay,iYear: Word;

public
procedure InitBlank;

private
constructor Create;
function GetDT: TDateTime;
function GetString: string;
procedure SetDT(dtFrom: TDateTime);
procedure SetMonth(iValue: Word);
procedure SetDay(iValue: Word);
procedure SetYear(iValue: Word);
procedure SetVagueness(iValue: TVagueness);

public
property AsString: string read GetString;
property AsDateTime: TDateTime read GetDT write SetDT;
property Month: Word read iMonth write SetMonth;
property Day: Word read iDay write SetDay;
property Year: Word read iYear write SetYear;
property Vagueness: TVagueness read
iVagueness write SetVagueness;

procedure UpdateDlg;
procedure GetData(var Buff: TVDBuff);
procedure SetData(const Buff: TVDBuff);
function AdjustDay: Boolean;
{$IFDEF QA_MODE}
procedure SelfTest;
{$ENDIF}

end;

Figure 4: A simplified
contact management
system that uses the
TVagueDate object for
tracking birthdays. The
SelfTest button exe-
cutes the test driver
associated with the
TVagueDate object.
The button only
appears if the applica-
tion is compiled with
QA_Mode defined.

Figure 5: A pop-up
form that is provided
when calling the
UpdateDlg method of
TVagueDate. It allows
the user to specify a
date with unknown
parameters.

Figure 6 (Top): Excerpted
code from
TVagueDate.SelfTest.

Figure 7 (Left): Screen
output of a successful test
driver execution. If any of
the equality assertion tests
failed, then an X would
have appeared in place
of the equal sign (=).
base table or a disk file. Such code may be a function that only
returns a status flag, or a procedure that returns nothing at all.

If a status flag is returned, it can certainly be tested using
bAssert, for example, which is used to test a Boolean value. As
with sAssert, the first argument passed to bAssert is the actual
result of the function being tested, and the second argument is
the expected result (True or False). Another routine, iAssert,
can be used to test functions that return an integer status flag.

One of TVagueDate’s methods, AdjustDay, is used to check the
combination of values currently defined by an instance of the
object and adjust them if necessary. For example, if the day is set
to 31, but the month is set to February, AdjustDay will change
the day to either 28 or 29, depending if the year is a leap year.
AdjustDay is a function that returns a Boolean value: True if the
day had to be adjusted, False if not.

As before, to test this routine we’ll call it several times, setting it
up with a series of sample data designed to exercise all the various
combinations. We can check the Boolean result flag for an expect-
ed value, but that hardly tells us anything. How do we know that
the routine actually adjusted anything (or properly refrained from
modifying anything)? The answer lies in using our tool kit to
make some secondary assertions. In this case, we’ll simply check
the value of the day field directly to see if it’s correct. A portion of
the SelfTest method (see Figure 8) illustrates such test code.
Delphi Informant April 1996 14

Craig Jones is a contract software engineer in Southern California, with over 14
years of programming and consulting experience. He is the programming standards
SIG leader for the Orange County Delphi Users Group. He is also a member of Team
Borland, supporting Paradox and Delphi on the GEnie network. Mr Jones can be
reached at craig.jones@genie.geis.com or on CompuServe at 71333,3515.

Figure 8: Additional test code to be included in
TVagueDate.SelfTest. This code exercises the AdjustDay method.
Since the Day property is changed as a ramification of the
AdjustDay method, the value of the property is checked in addition
to checking the result code returned by the method.

{ Month with 30 days }
InitBlank;
Year:=0; Month:=4; Day:=30;
bAssert(AdjustDay,FALSE);
Day:=31;
bAssert(AdjustDay,TRUE);
iAssert(Day,30);

{ Leap year day }
Year:=1996; Month:=2; Day:=10;
bAssert(AdjustDay,FALSE);
Day:=31;
bAssert(AdjustDay,TRUE);
iAssert(Day,29);

{ Non-leap year }
Year:=1995;
bAssert(AdjustDay,TRUE);
iAssert(Day,28);

In Development
Similarly, if the function being tested involves adding records
to a table, then an appropriate secondary assertion might be
to check the table’s size. Directly searching the table for a spe-
cific record — to ensure that it does or does not exist — may
be a better method. If the function causes a global variable to
change, or otherwise changes the state of the system, then
that too could be checked directly (or indirectly).

QA Impact on System Design
As previously stated, a good software engineer knows how a
system will be tested before a single line of code is written.
This is because there are times when testing issues can have
direct bearing on the system’s design. Let’s say that a test dri-
ver must be written for a function that uses the current system
date as a factor (e.g. for computing a person’s age or calculat-
ing a depreciation). We need to call this function several times
within the driver and be able to declare the expected results.
However, this is impossible if the test driver is to be reusable
in the future when the current date will differ. Furthermore,
we really ought to test for significant upcoming dates such as
month-end, year-end, and the turning of the millennium.

One solution is to define a global variable that represents the
current system date (e.g. SysCtrls.Today), initializing it once at
startup, and then always referring to it within the application
instead of directly calling the Date function. During normal
operation, this variable is set only once at startup and then left
alone, but during testing we are free to change it at will. Some
other system factors that could be handled in this fashion
include: user information (full name, login ID, initials), work-
station information (node address, local vs. remote), and print-
er connection information.
Comparing Log Files
As the size of an application grows, the number and size of the
associated test drivers should also grow. After a while, running
the test drivers one at a time and visually inspecting the results
on the screen will become tiresome. If TQA.UseFile is set to
True, then the results of the various assertion checks will be
written to a disk file, according to the specified file path and
test name. This makes it possible to run all the test drivers for
an entire system consecutively and then inspect the results after-
wards, simultaneously.

Furthermore, once the results are verified, the files can be
copied to another subdirectory for future reference as a base-
line. Thereafter, visually inspecting the results of subsequent
test runs would be unnecessary. Instead, the newly generated
set of files could be compared to the baseline copies using an
ASCII file comparison utility program. A simple comparison
utility, FC.EXE, is provided with MS-DOS (including
Windows 95). Some comparison utilities are bundled with ver-
sion control software packages, and others are available from
programmer catalogs, as well as through many online services.

Conclusion
With the proper tools and planning, assuring software quality
can be relatively painless. We’ve seen how to systematically
develop unit test drivers that are machine-executable, and
therefore easily repeatable, and we built a QA tool kit to
accommodate the task.

The final installment in this series will discuss other commercially
available testing software that can be used with Delphi programs. ∆

The demonstration project referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\APR\DI9604Q2.
Delphi Informant April 1996 15

In Development
Begin Listing One — UT1QA.PAS
{ Project: UT1 - General Application Utilities

Function: Quality Assurance Tool Kit }
unit Ut1qa;
{$I UT1Incl.PAS}

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, ExtCtrls;

type
TformQALog = class(TForm)

memoQALog: TMemo;
btnQAOK: TButton;
procedure btnQAOKClick(Sender: TObject);

end;

TQA = class
private

fileQALog: TextFile;
sTestID: string[8];

public
FilePath: string[79];
UseForm, UseFile: Boolean;
procedure Start(sTestName: string);
procedure Stop;
procedure Log(sPrefix, sMessage: string);
procedure sAssert(sActual, sExpected: string);
procedure bAssert(bActual, bExpected: Boolean);
procedure iAssert(iActual, iExpected: Integer);
procedure nAssert(nActual, nExpected: Double);

end;

var
formQALog: TformQALog;
QA: TQA;

implementation

{$R *.DFM}

{ Start test run. sTestName = Identifier for the test. }
procedure TQA.Start(sTestName: string);
begin

Screen.Cursor := crHourglass;
sTestID := sTestName;
if UseForm then begin

formQALog.Caption := sTestID+' Test Sequence';
formQALog.Show;
with formQALog.memoQALog do begin

Lines.Clear;
Font.Color := clNavy;
Font.Name := 'Courier New';
Font.Size := 8;

end;
end;
if UseFile then begin

AssignFile(fileQALog, FilePath + sTestID + '.TXT');
{ Erase the file, if not already empty. }
Rewrite(fileQALog);

end;
end;

{ Log message during test run. sMessage = message to log. }
procedure TQA.Log(sPrefix, sMessage: string);
begin

if UseForm then
formQALog.memoQALog.Lines.Add(

Format('%-2.2s',[sPrefix]) + sMessage);
if UseFile then

WriteLn(fileQALog, sPrefix+sMessage)
end;

{ Assert that two strings are equal. sActual = the value
to test. sExpected = what the tested value should be. }

procedure TQA.sAssert(sActual, sExpected: string);
var
sLine: string;

begin
if (sActual = sExpected) then

Log('= ',sActual);
else begin

Log('X ',sActual);
Log(' ',sExpected);

end;
end;

{ Assert that two Boolean values are equal. bActual =
value to test. bExpected = what tested value should be.}

procedure TQA.bAssert(bActual, bExpected: Boolean);
var

sLine, sActual, sExpected: string;
begin

if bActual then
sActual := 'true'

else
sActual := 'false';

if bExpected then
sExpected := 'true'

else
sExpected := 'false';

if (bActual = bExpected) then
Log('= ',sActual);

else
Log('X ',sActual+' -- expected: '+sExpected);

end;
end;

{ Assert that two integers are equal. iActual = the value
to test. iExpected = what the tested value should be. }

procedure TQA.iAssert(iActual, iExpected: Integer);
var

sLine: string;
begin

if (iActual = iExpected) then
Log('= ',IntToStr(iActual));

else
Log('X ',IntToStr(iActual) +

' -- expected: ' + IntToStr(iExpected));
end;

end;

{ Assert that two real numbers are equal. nActual = the
value to test. nExpected = what tested value should be. }

procedure TQA.nAssert(nActual, nExpected: Double);
var

sLine: string;
begin

if (nActual = nExpected) then
Log('= ',Format('%n',[nActual]))

else
Log('X ',Format('%n',[nActual])+' -- expected: ' +

Format('%n',[nExpected]));
end;

procedure TQA.Stop; { End a test run }
begin

if UseForm then
formQALog.Caption:=
sTestID+' Test Sequence Completed';

if UseFile then
Close(fileQALog);

Screen.Cursor := crDefault;
end;

{ Hide the QA results form }
procedure TformQALog.btnQAOKClick(Sender: TObject);
begin
{$IFDEF QA_MODE}

formQALog.Hide;
{$ENDIF}
end;

end.
End Listing One
Delphi Informant April 1996 16

In Development
Begin Listing Two — CM1Vague.PAS
{ Project: CM1 - Contact Manager Example Application
Function: Object to represent vaguely specified dates
(e.g. "After Apr 1996") }

unit Cm1vague;
{$I UT1Incl.PAS}
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, ExtCtrls,
UT1App, UT1QA;

const
MonthList = 'JanFebMarAprMayJunJulAugSepOctNovDec';

type
{ Holding buffer for TVagueDate data }
TVDBuff = array[0..6] of Byte;
TVagueness = (vdOn, vdAbout, vdBefore, vdAfter);

TVagueDate = class(TObject)
private

iVagueness: TVagueness;
iMonth,iDay,iYear: Word;

public
procedure InitBlank;

private
function GetDT: TDateTime;
function GetString: string;
procedure SetDT(dtFrom: TDateTime);
procedure SetMonth(iValue: Word);
procedure SetDay(iValue: Word);
procedure SetYear(iValue: Word);
procedure SetVagueness(iValue: TVagueness);

public
property AsString: string read GetString;
property AsDateTime: TDateTime read GetDT write SetDT;
property Month: Word read iMonth write SetMonth;
property Day: Word read iDay write SetDay;
property Year: Word read iYear write SetYear;
property Vagueness: TVagueness read iVagueness write

SetVagueness;
procedure UpdateDlg;
procedure GetData(var Buff: TVDBuff);
procedure SetData(const Buff: TVDBuff);
function AdjustDay: Boolean;

{$IFDEF QA_MODE}
procedure SelfTest;

{$ENDIF}
end;

TformVagueDate = class(TForm)
radioVagueness: TRadioGroup;
btnOK: TButton;
boxMDY: TGroupBox;
editMonth: TEdit;
editDay: TEdit;
editYear: TEdit;
btnCancel: TButton;
procedure btnOKClick(Sender: TObject);
procedure btnCancelClick(Sender: TObject);

end;

var
formVagueDate: TformVagueDate;

implementation

{$R *.DFM}
{ Initialize a blank vague date }
procedure TVagueDate.InitBlank;
begin

iMonth := 0;
iDay := 0;
iYear := 0;
iVagueness := vdOn;

end;
{ Copy data to an external buffer. Parameter: 7-byte
buffer in which to place the data. }

procedure TVagueDate.GetData(var Buff: TVDBuff);
begin

Move(iVagueness,Buff,SizeOf(TVDBuff));
end;

{ Load the data from an external buffer. Parameter:
7-byte buffer with the source data. }

procedure TVagueDate.SetData(const Buff: TVDBuff);
begin

Move(Buff,iVagueness,SizeOf(TVDBuff));
end;

{ Build a string representation of the date }
function TVagueDate.GetString: string;
var

sVagueness,sMonth,sDay,sYear: string;
begin

sVagueness := ''; { Initialize }
sMonth := '';

sDay := '';
sYear := '';
case iVagueness of { Vagueness prefix }

vdAbout: sVagueness := 'About ';
vdBefore: sVagueness := 'Before ';
vdAfter: sVagueness := 'After ';

end;
{ Month, e.g. Oct }
if (iMonth >= 1) and (iMonth <= 12) then

sMonth := copy(MonthList,iMonth*3-2,3)+' ';
case iDay of { Day, e.g. 31st }

0: sDay := '';
1,21,31: sDay := inttostr(iDay)+'st ';
2,22: sDay := inttostr(iDay)+'nd ';
3,23: sDay := inttostr(iDay)+'rd ';
else sDay := inttostr(iDay)+'th ';

end;
if iYear>0 then { Year, 4 digits }

fmtstr(sYear,'%4.4d ',[iYear]);
{ Combine them }
result := sVagueness + sMonth + sDay + sYear;
while (length(result)>0) and

(copy(result,length(result),1) = ' ') do
delete(result,length(result),1);

end;

{ Build a specific approximation of the date }
function TVagueDate.GetDT: TDateTime;
var

iM, iD, iY: Word; { Working copies }
iThisMonth, iThisDay, iThisYear: Word; { Today }
bConverted: Boolean; { Conversion success flag }

begin { -- Initialize -- }
iM := iMonth;
iD := iDay;
iY := iYear;
if (iM<1) then begin { Month }

case iVagueness of
vdBefore: iM := 1;
vdAfter: iM := 12;
else iM := 1; { Use July 1st? }

end;
end;
if (iD<1) then begin { Day }

case iVagueness of
vdBefore: iD := 1;
vdAfter: iD := 31;
else iD := 1; { Use the 15th? }

end;
end;
if (iY<1) then begin { Year }

DecodeDate(AppCtrl.dtToday,iThisYear,
iThisMonth,iThisDay);

iY := iThisYear;
end;
{ Combine them }
bConverted := FALSE;
Delphi Informant April 1996 17

In Development
while (not bConverted) do begin
try

Result := EncodeDate(iY,iM,iD);
bConverted := TRUE;

except on EConvertError do begin
if iD > 28 then begin

iD := iD -1;
Continue;

end;
Result := EncodeDate(1,1,1);
bConverted := TRUE;
end; { EConvertError }

end; { try }
end; { while }

end;

{ Load the date from a TDateTime record }
procedure TVagueDate.SetDT(dtFrom: TDateTime);
begin

DecodeDate(dtFrom,iYear,iMonth,iDay);
iVagueness := vdOn;

end;

{ Directly set the month }
procedure TVagueDate.SetMonth(iValue: Word);
begin

if (iValue>=1) and (iValue<=12) then
iMonth := iValue

else
iMonth := 0;

end;

{ Directly set the day }
procedure TVagueDate.SetDay(iValue: Word);
begin

if (iValue>=1) and (iValue<=31) then
iDay := iValue

else
iDay := 0;

end;

{ Adjust the day to agree with the month and/or year }
function TVagueDate.AdjustDay: Boolean;
var

bEncoded: Boolean;
iMaxDay: Word;

begin
Result := FALSE; { Assume no adjustment necessary }
if (iDay>28) and (iMonth>0) then begin

if (iYear>0) then begin
{ Encode full date and adjust until it works }
bEncoded := FALSE;
while (not bEncoded) do begin

try
EncodeDate(iYear,iMonth,iDay);
{ If we get this far, the encode worked }
bEncoded := TRUE;

except on EConvertError do begin
if iDay > 28 then begin

iDay := iDay-1;
Result:=TRUE;

end;
if iDay > 28 then

Continue; { Try again }
bEncoded := TRUE;

end; { EConvertError }
end; { try }

end; { while }
end else begin

case iMonth of { Unknown year, so go by month }
2: iMaxDay := 29;
4,6,9,11: iMaxDay := 30;
else iMaxDay := 31;

end;
if iDay > iMaxDay then begin

iDay := iMaxDay;
Result := TRUE; { Adjustment made }

end;
end;
end;

end;

{ Directly set the year }
procedure TVagueDate.SetYear(iValue: Word);
begin

if (iValue>=1) and (iValue<=9999) then
iYear := iValue

else
iYear := 0;

end;

{ Directly set the vagueness factor }
procedure TVagueDate.SetVagueness(iValue: TVagueness);
begin

iVagueness := iValue;
end;

{ Pop up a dialog box to enter vague date info }
procedure TVagueDate.UpdateDlg;

var
iTemp: Word;

begin
with formVagueDate do begin

{ Initialize the dialog box fields: Month }
if (iMonth > 0) then

editMonth.Text := IntToStr(iMonth)
else

editMonth.Text := '';
if iDay > 0 then { Day }

editDay.Text := IntToStr(iDay)
else

editDay.Text := '';
if iYear > 0 then { Year }

editYear.Text := IntToStr(iYear)
else

editYear.Text := '';
{ Vagueness }
radioVagueness.ItemIndex := Ord(iVagueness);
ShowModal;
{ -- Save the changes (if Okayed) -- }
if ModalResult = mrOK then begin

try { Save the month }
iTemp := StrToInt(editMonth.Text);

except on EConvertError do iTemp := 0;
end;
if (iTemp<1) or (iTemp>12) then

iTemp := 0;
iMonth := iTemp;
try { Save the day }

iTemp := StrToInt(editDay.Text);
except on EConvertError do iTemp := 0;
end;
if (iTemp<1) or (iTemp>31) then

iTemp := 0;
iDay := iTemp;
try { Save the year }

iTemp := StrToInt(editYear.Text);
except on EConvertError do iTemp := 0;
end;
if (iTemp<1) or (iTemp>9999) then

iTemp := 0;
iYear := iTemp;
{ Save the vagueness }
iVagueness := TVagueness(radioVagueness.ItemIndex);

end; { Changes okayed }
end; { with }

end;

{$IFDEF QA_MODE}
procedure TVagueDate.SelfTest; { Test driver }
var

dtTemp: TDateTime;
begin

QA := TQA.Create;
with QA do begin

UseForm := TRUE;
FilePath := 'C:\QALOG\';
Delphi Informant April 1996 18

In Development
UseFile := FALSE;
Start('VAGUEDT');
Log('','TVagueDate Self-Test');
Log('','--------------------');
{ -- Vagueness = "On" -- }
Log('','----- On -----');
InitBlank; Vagueness:=vdOn;
Year:=1996; Month:=4; Day:=1;
sAssert(AsString,'Apr 1st 1996');
nAssert(AsDateTime,EncodeDate(1996,4,1));
{ Unknown Day }
Year:=1996; Month:=4; Day:=0;
sAssert(AsString,'Apr 1996');
nAssert(AsDateTime,EncodeDate(1996,4,1));
{ Unknown Month & Day }
Year:=1996; Month:=0; Day:=0;
sAssert(AsString,'1996');
nAssert(AsDateTime,EncodeDate(1996,1,1));
{ Unknown Year }
Year:=0; Month:=4; Day:=2;
sAssert(AsString,'Apr 2nd');
nAssert(AsDateTime,EncodeDate(1996,4,2));
{ -- Vagueness = "After" -- }
Log('','----- After -----');
InitBlank; Vagueness:=vdAfter;
Year:=1996; Month:=4; Day:=1;
sAssert(AsString,'After Apr 1st 1996');
nAssert(AsDateTime,EncodeDate(1996,4,1));
{ Unknown Day }
Year:=1996; Month:=4; Day:=0;
sAssert(AsString,'After Apr 1996');
nAssert(AsDateTime,EncodeDate(1996,4,30));
{ Unknown Month & Day }
Year:=1996; Month:=0; Day:=0;
sAssert(AsString,'After 1996');
nAssert(AsDateTime,EncodeDate(1996,12,31));
{ Unknown Year }
Year:=0; Month:=4; Day:=2;
sAssert(AsString,'After Apr 2nd');
nAssert(AsDateTime,EncodeDate(1996,4,2));
{ -- Unusual Years -- }
Log('','----- Unusual Years -----');
InitBlank; Vagueness:=vdAbout;
Year:=1; Month:=4; Day:=1;
sAssert(AsString,'About Apr 1st 0001');
nAssert(AsDateTime,EncodeDate(1,4,1));
Year:=101; Month:=4; Day:=1;
sAssert(AsString,'About Apr 1st 0101');
nAssert(AsDateTime,EncodeDate(101,4,1));
Year:=1801; Month:=4; Day:=1;
sAssert(AsString,'About Apr 1st 1801');
nAssert(AsDateTime,EncodeDate(1801,4,1));
Year:=2000; Month:=4; Day:=1;
sAssert(AsString,'About Apr 1st 2000');
nAssert(AsDateTime,EncodeDate(2000,4,1));
Year:=2001; Month:=4; Day:=1;
sAssert(AsString,'About Apr 1st 2001');
nAssert(AsDateTime,EncodeDate(2001,4,1));
{ -- Adjust Day Function -- }
Log('','----- AdjustDay Function -----');
{ Month with 30 days }
InitBlank;
Year:=0; Month:=4; Day:=30;
bAssert(AdjustDay,FALSE);
Day:=31;
bAssert(AdjustDay,TRUE);
iAssert(Day,30);
{ Leap year day }
Year:=1996; Month:=2; Day:=10;
bAssert(AdjustDay,FALSE);
Day:=31;
bAssert(AdjustDay,TRUE);
iAssert(Day,29);
{ Non-leap year }
Year:=1995;
bAssert(AdjustDay,TRUE);
iAssert(Day,28);
Stop;

end;
QA.Free;

end;
{$ENDIF}

{ Close (OK) the dialog box }
procedure TformVagueDate.btnOKClick(Sender: TObject);
begin

ModalResult := mrOK;
end;

{ Cancel the dialog box }
procedure TformVagueDate.btnCancelClick(Sender:
TObject);
begin

ModalResult := mrCancel;
end;

end.
End Listing Two
Delphi Informant April 1996 19

On the Cover
Delphi 1.0 / Delphi 2.0 / Object Pascal

By Cary Jensen, Ph.D.

Sharing Components
Sharing Objects Between Forms:
Techniques for Delphi 1.0 and 2.0
The properties of an object are sometimes objects themselves. For exam-
ple, the DataSet property of a DataSource component is a property of

the type TDataSet. This means that you can assign an object of type
TDataSet (or one of its descendants) to this property.
In most cases, Delphi makes it easy to assign
a value to an object property. In the Object
Inspector, when you click the down arrow of
an object property, Delphi displays a list of
all objects defined for that form that are of
the specified type (or a descendant of it).
With the DataSet property of a DataSource
component, for example, the drop-down
menu for the property contains all DataSet
descendants defined for the form.

While this list is convenient, it does not nec-
essarily contain all objects that can be
assigned to that property. Actually, there may
be objects defined within a project that are of
the appropriate type, but they do not appear
on the displayed list for a particular property.

Specifically, an object that is of the appropriate
type, but is declared as part of another form in
the project, will not appear in the property’s
drop-down list, even though it’s a valid object
for that property. For example, if Form1 con-
tains a Table component, the DataSet property
of a DataSource defined on Form2 can be
assigned this Table from Form1, even though
the Table will never appear in the drop-down
list for the DataSource’s DataSet property.

This article describes how to assign an object
defined on one form (or unit) to the object
property of an object defined on another
form. For Delphi 1.0, this technique requires
that you add Object Pascal code. Performing
this task is even easier in Delphi 2.0. Let’s take
them in order. (And please keep in mind that
the Delphi 2.0 information in this article is
based on a pre-release version of that product.
Behavior in the shipping version may differ.)
Sharing Objects between
Forms in Delphi 1.0
A DataSet descendant (a Table, Query, or
StoredProc component) defined on one form
will never appear in the drop-down list for
the DataSet property of a DataSource defined
on another form. This merely means that this
property cannot be set at design time.

Fortunately, however, it can be assigned at run
time. Doing so allows you to share DataSet
and DataSource components across multiple
forms, permitting the forms to also share the
same Table component (or other DataSet), and
consequently, a common cursor to the table.

This valuable technique is simply a specific
application of the more general capability of
assigning to properties, objects and methods
contained in another unit. In other words,
although this technique is demonstrated here to
show two forms sharing a common cursor, it
could just as easily be used to let two forms
share any other type of object, or even event
handlers. Now that we’ve got the basic concepts
outlined, it’s time to build an interactive exam-
ple. Carry out the following instructions to cre-
ate two forms that share a common DataSet.

Building Form1
Begin by creating a new project. On the
displayed form, add the following compo-
nents: a DataSource, a Table, a MainMenu,
and a DBGrid. Set the DataSet property of
the DataSource to Table1. For the Table
component, set the DatabaseName property
to DBDEMOS, the TableName property to
CUSTOMER.DB, and the Active property to
True. Set the DBGrid’s DataSource property
Delphi Informant April 1996 20

Figure 1: A form under construction.
Figure 2 (Top):
A menu for
Form1.

Figure 3 (Left):
A single-record
form created
using the
Database Form
Expert.

On the Cover
to DataSource1 and its Align property to alClient. Your form
should now resemble Figure 1.

Now double-click the MainMenu component and create two
main menu items, &File and &View. Add an E&xit option
under the &File menu, and add an &Single Record item
under the &View menu. Your menu should resemble Figure 2.
Close the Menu Designer and enter the following statement
in the OnClick event handler for the MenuItem Exit1:

Close;

Then enter the following statement in the OnClick event
handler for SingleRecord1:

Form2.Show;

Now, while we’re still working with Unit1, we’ll need to add
Unit2 to a uses statement in Unit1 (we’ll create the second
form shortly). In the implementation section of Unit1, add
the following uses clause:

uses
Unit2;

The completed Unit1 is shown in Listing Three on page 23.

Building Form2
Now, we’ll create Form2 that will be a single record form in
this project. A single record form — where individual fields
are displayed using DBEdit components — is easier to create
with the Database Form Expert.

Select Help | Database Form Expert from Delphi’s menu to
access this tool. Then follow these steps:

On the first page, set Form Options to Create a simple

form, and DataSet Options to Create a form using TTable

objects. Click the Next button.
On the second page, set the Drive or Alias Name combo
box to DBDEMOS, choose CUSTOMER.DB from the Table

Name list, and click Next.
On the third page, click on the double right arrow (>>)
to move all fields from the Available Fields list to the
Ordered Selected Fields list, and click Next.
On the fourth page, set the field layout to Vertical and
click Next to advance.
On the fifth page, select Left to display field labels to the
left of the fields, and then click Next.
Finally, on the sixth page, remove the check from the
Generate a main form check box. Click the Create button
to build the form shown in Figure 3.

Since the purpose of this demonstration is to use Table1
from Form1 in Form2, remove the Table component from
Form2.

The final two steps require code to be placed in Unit2 to
assign Table1 from Form1 to the DataSet property of
DataSource1 on Form2. (If you’re working in Delphi 2.0,
replace these final two steps with the ones under the section
“Sharing Objects Between Forms in Delphi 2.0.”) Begin by
selecting Form2 in the Object Inspector and displaying the
Events page. Then, double-click the OnCreate event proper-
ty to display Form2 ’s OnCreate event handler. It already
contains this statement:

Table1.Open;

Delete this code and replace it with the following line:

DataSource1.DataSet := Form1.Table1;

Finally, add a uses clause to Unit2 so that it can refer to the
objects declared in Form1. Within Unit2 ’s implementation
section, add:

uses
Unit1;
Delphi Informant April 1996 21

Figure 4: The project Share1.DPR. Form1 and Form2 both use
the Table component defined in Form1. As a result, both forms
share a common cursor, which causes them to remain synchro-
nized, regardless of which form you use to navigate the table.

On the Cover

Figure 5: The Use Unit dia-
log box permits you to choose
a unit whose interface
declarations are available
to the current form.

Figure 6 (Left): Because Unit2 uses Unit1, a Table component
declared in Unit1 can be assigned to the DataSet property of
DataSource1 on Form2 at design time. Figure 7 (Right): A data
module holding the DataSource and DataSet components used by
the Sharedm.DPR project.
The completed Unit2 should now resemble Listing Four on
page 23.

You’re done! Run this project and select View | Single

Record to display Form2. With both forms displayed, notice
that as you navigate one form, the other automatically
remains synchronized, with both forms always showing the
same record (see Figure 4). This is because the forms share
the same DataSet, Form1.Table. Thus, they share a cursor.

Sharing Event Handlers
We’ve demonstrated that it’s possible to assign a value defined
in another unit to a component’s property. As mentioned, this
same technique can be used to assign an event handler defined
in another unit to the event property of an object. For exam-
ple, if you create a button named Button1 on Form2, you can
add the following statement to the OnCreate event handler for
Form2 to call the OnClick event handler for Exit1 from Form1
when Button1 is clicked:

Button1.OnClick := Form1.Exit1Click;

Instead of assigning the procedure name defined in Unit1 to the
Button’s OnClick event handler, you can alternatively assign the
OnClick property of the MenuItem, Exit1, to this property. The
following statement is functionally identical to the preceding one:

Button1.OnClick := Form1.Exit1.OnClick;

With this button added to Form2, clicking it causes Form1 to
close. As a result, Form2 closes as well.

Sharing Objects between Forms in Delphi 2.0
While it’s not difficult to share objects between forms in
Delphi 1.0, it’s even easier with Delphi 2.0. This is
because Delphi 2.0 includes a feature that permits one
unit to use another unit’s declarations. Importantly, this
feature in Delphi 2.0 permits you to set object properties
at run time.

You can demonstrate how easy this is in Delphi 2.0. Create a
new project by following all but the last two steps of the pre-
ceding example. Then, continue as follows:
With Form2 selected, select File | Use Unit to display the
Use Unit dialog box (see Figure 5). Select Unit1 and then
click OK.
Select DataSource1 on Form2 and then display the Object
Inspector. Open the drop-down list for the DataSet proper-
ty of DataSource1. As shown in Figure 6, Table1, a DataSet
descendant defined on Form1, is displayed in this list.
Select Form1.Table1 to assign Table1 from Form1 to the
DataSet property of the DataSource1 object on Form2. This
project can now be run to produce synchronized forms.

The only limitation to the Use Unit feature in Delphi 2.0
is that it does not allow you to select event handlers
defined in another unit at design time. This is, however,
much less of a common need than assigning objects to
object properties.

Using Data Modules
In addition to a form, which can hold visual as well as non-
visual objects, Delphi 2.0 supports a non-visual version of a
form, called a data module. One of the primary uses for a
data module is to hold DataSource and DataSet objects that
can be used by multiple forms. The advantage of a data mod-
ule over a regular form is that it takes fewer resources because
it does not have a visual representation.

The use of a data module is demonstrated in the project
Sharedm.DPR. This project is similar to the one shown in
Figure 4, with one important exception — neither Form1 nor
Form2 contains any DataSource or DataSet components.
Instead, a data module was created by selecting File | New

Data Module. This data module, named DataModule1, is
shown in Figure 7.

Both Form1 and Form2 must use the unit associated with
the data module to use the components placed in the data
module. This is accomplished by selecting Form1, selecting
File | Use Unit, and then selecting the data module’s unit
Delphi Informant April 1996 22

On the Cover

s,
from the Use Unit dialog box. This process must be repeat-
ed for Form2.

Conclusion
Using Delphi 1.0, the objects and event handlers defined
with one unit can be used by objects on other forms by
adding a small amount of code that makes the necessary
property assignments at run time.

With Delphi 2.0, the Use Unit dialog box enables you to
assign object properties at design time as well, greatly simpli-
fying the process of using objects across forms. Finally, the
ability to define data modules — non-visual, form-like
objects — permits database developers to separate data asso-
ciations from the forms used to display the data. ∆

The demonstration forms referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\APR\DI9604CJ.
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including the
upcoming Delphi in Depth [Osborne, MacGraw-Hill, 1996]. He is also Contributing
Editor of Paradox Informant and Delphi Informant, and this year’s Chairperson of the
Paradox Advisory Board for the upcoming Borland Developers Conference. You can
reach Jensen Data Systems at (713) 359-3311, or on CompuServe at 76307,1533.
Begin Listing Three — Unit1.PAS
unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, Grids, DBGrids, DB;

type
TForm1 = class(TForm)

DBGrid1: TDBGrid;
DataSource1: TDataSource;
Table1: TTable;
MainMenu1: TMainMenu;
File1: TMenuItem;
Exit1: TMenuItem;
View1: TMenuItem;
SingleRecord1: TMenuItem;
procedure Exit1Click(Sender: TObject);
procedure SingleRecord1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

uses
Unit2;

procedure TForm1.Exit1Click(Sender: TObject);
begin

Close;
end;
procedure TForm1.SingleRecord1Click(Sender: TObject);
begin

Form2.Show;
end;

end.
End Listing Three
Begin Listing Four — Unit2.PAS
unit Unit2;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classe
Graphics, Controls, StdCtrls, Forms, DBCtrls,
DB, DBTables, Mask, ExtCtrls;

type
TForm2 = class(TForm)

ScrollBox: TScrollBox;
Label1: TLabel;
EditCustNo: TDBEdit;
Label2: TLabel;
EditCompany: TDBEdit;
Label3: TLabel;
EditAddr: TDBEdit;
Label4: TLabel;
EditAddr2: TDBEdit;
Label5: TLabel;
EditCity: TDBEdit;
Label6: TLabel;
EditState: TDBEdit;
Label7: TLabel;
EditZip: TDBEdit;
Label8: TLabel;
EditCountry: TDBEdit;
Label9: TLabel;

EditPhone: TDBEdit;
Label10: TLabel;
EditFAX: TDBEdit;
Label11: TLabel;
EditTaxRate: TDBEdit;
Label12: TLabel;
EditContact: TDBEdit;
Label13: TLabel;
EditLastInvoiceDate: TDBEdit;
DBNavigator: TDBNavigator;
Panel1: TPanel;
DataSource1: TDataSource;
Panel2: TPanel;
Table1: TTable;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form2: TForm2;

implementation

{$R *.DFM}

uses
Unit1;

procedure TForm2.FormCreate(Sender: TObject);
begin

DataSource1.DataSet := Form1.Table1;
end;

end.
End Listing Four
Delphi Informant April 1996 23

Design for Upsizing
Making It Easier to Move Delphi Database Applications
from Paradox to Client/Server

Figure 1: The G

unit Globals;

interface

const
{ Tables }
tnCustomer
tnOrders
tnInvoice
tnItems
{ Indices }
inCustCustNo
inCustName
inOrderOrder
inOrderCustN

implementation

end.

Delphi C/S
Delphi / Object Pascal / SQL servers / Paradox

By Bill Todd
A s more organizations begin the move to client/server computing, the
odds are increasing that your Delphi applications that use local Paradox

and dBASE tables for data storage will have to be changed to work with
data stored on a SQL database server. There are a number of things that
you can do when you write a local table application to make the move to
client/server easier.
Some of the first problems you’ll encounter
are that the rules for naming tables, indexes,
and columns are different on SQL servers.
Here are some incompatibilities you may face.

Table names. Servers will not accept a table
name that contains a period. For example, if
you have a Paradox table named CUS-
TOMER.DB you won’t be able to create a
table with the same name on a server. The
closest you could get would be a table named
“Customer”.

There are several ways to deal with table
name incompatibilities. The first is to add a
unit to your project that’s sole purpose is to
hold constants that are used throughout your
program. Define a constant for each table
name and index name. The unit would then
resemble the Globals unit shown in Figure 1.
lobals unit.

 = 'customer.db';
 = 'orders.db';
 = 'invoice.db';
 = 'items.db';

 = '';
 = 'LastFirst';
No = '' ;
o = 'CustNo';
You can add this unit to the uses clause of
every unit where you need to use a table name
or index name in your code and use the con-
stant instead of a literal. This means that if the
names of tables or indexes change when you
move to a server, you need only change the
constant declaration in one place, recompile,
and you’re ready to go.

Using a Globals unit is good practice for any
fixed value. By defining a value in a single place
and referencing it by the constant name, you
not only make your code more readable, but
you make changing any constant value easy.

Index names. All indexes on a SQL server
must have a name. However, the primary
index of a Paradox table does not have a name.
To get around this, specify the primary index
of a Paradox table in Delphi as a null string:

CustTbl.IndexName := ''

Then, when the transition to a SQL server is
made, you can modify the constant without hav-
ing to revisit every reference to the primary key.

Column names. Column names in Paradox
tables can include spaces and punctuation
characters. RDBMS column names are typi-
cally restricted to letters, numbers, and the
underscore character.

The only way to avoid column name incom-
patibilities is to use column names in your
local tables that will be acceptable to most
Delphi Informant April 1996 24

Delphi C/S
servers. This means that column names should start with a let-
ter, include only the letters A through Z, the digits 0 through
9, and the underscore character.

A Property Value Problem
Using constants solves the problem when table or index names
are used in code. However, you still need to deal with table
and index names that are used as property values for TTables
and other components. One technique that works in all situa-
tions is to assign the values of all table and index properties in
the form’s OnCreate event handler using the constants from
the Globals unit described earlier.

However, there’s one problem with assigning table names in your
form’s OnCreate event handler. If the TableName property is not
assigned at design time, you won’t be able to see live data or
open the Fields editor to instantiate field objects for your tables.

Here’s another alternative that you can use with TTable com-
ponents for the table name. Use the name of the table with
no extension as the value for the component’s TableName
property. Normally, the TableType property is set to ttDefault
and Delphi determines the table’s type from the file extension
of the TableName property.

If you omit the extension from the TableName property you
must also set the TableType property to either ttParadox or
ttDbase so Delphi will know the table’s type. This will make the
move to a database server easy, provided you can create the
tables on the server with the same names you use for your local
tables. You do not have to change the TableType property back
to ttDefault when moving your data to a server. Delphi only
uses the TableType for local tables.

Note, however, that this only works for table names. The only
solution for the primary index of a Paradox table is to assign the
value in the form’s OnCreate event handler from a constant. The
index name must change when you move to a server; no server
will let you create an index with a null name.

A TQuery Problem
TQuery components also present a problem if the SQL state-
ment contains a table name that includes a file extension.
Fortunately, in queries you can omit the file extension and not
worry about the table type. The query will first search for the
table with a .DB extension. If the query does not find a
Paradox table, it will then search for a file with a .DBF exten-
sion (i.e. a dBASE table).

Alternatively, you can also assign those lines of the SQL state-
ment that include table names in the form’s OnCreate event
handler by using the constants from the Globals unit. For
example, the following statement will create the FROM clause
of a SQL query from a constant by assigning a new string to
the fourth line of the query (remember that the first line is 0):

CustQry.SQL[3] := 'FROM ' + tnCustomer;
TDatabase: Easing Migration to C/S
Using a TDatabase component in your application will not only
make conversion to client/server easier, but also offers several
benefits while you are using local tables. When moving your
data to a server, you’ll need a Database component to maintain
your connection to the server, provide explicit transaction con-
trol through its StartTransaction, Commit, and Rollback meth-
ods, and specify the transaction isolation level on the server.

To use a Database component:
1) Add it to your main form.
2) Set the AliasName property to the alias that contains your

data.
3) Set the DatabaseName property to the name of the tem-

porary alias you will use in your project.
4) Set the transaction isolation level if you want a level other

than the default of tiReadCommitted.
5) Set the Connected property to True either at design time

or in your main form’s OnCreate event handler.
6) Use the temporary alias you assigned to the

DatabaseName property everywhere else in your project
where an alias is required.

With the Database component already in place, you can move
to data on a server by simply running the BDE Configuration
Utility, and changing the definition of the alias used in the
Database component’s AliasName property. You must do this
so that the alias points to the database on the server instead of
to a subdirectory on your hard disk or file server.

While using local tables you can specify the path to the direc-
tory that contains your tables instead of setting the AliasName
property. To use a path, set the DriverName property to
Standard and add the path parameter to the Database com-
ponent’s Params property.

The path parameter takes the form:

PATH=C:\DIR1\DIR2

and can be in either upper- or lower-case. Figure 2 shows an
example of setting the path parameter at design time using
the String list editor. This is a particularly useful technique
for a program that you will distribute to many sites because it
avoids having to define a permanent alias as part of the instal-
lation procedure.

You can obtain the path from the command line, or an .INI
file. If you put the .EXE file in the same directory as the
tables, you can obtain the path from the Application.ExeName
property. Just remember to remove the .EXE file’s name from
the end of the string so you are left with just the path to the
directory containing the .EXE file.

Passing either the path to the data files, or the value to assign
to the Database component’s AliasName property on the
command line, is also a handy technique because it lets you
run the program against more than one database easily.
Delphi Informant April 1996 25

Figure 2: Using the String list editor to set the path parameter
at design time.

Delphi C/S

Figure 3: A Windows 95 shortcut — starting PHONE.EXE and
passing the PhoneNet alias on the command line.

Bill Todd is President of The Database Group, Inc., a Phoenix area consulting and
development company. He is co-author of Delphi: A Developer’s Guide [M&T
Books, 1995], Creating Paradox for Windows Applications [New Riders
Publishing, 1994], and Paradox for Windows Power Programming; Technical
Editor of Paradox Informant; a member of Team Borland; and a speaker at every
Borland database conference. He can be reached at (602) 802-0178, or on
CompuServe at 71333,2146.
For example, if you have a production database and a test
database, you can provide two icons on the Windows desk-
top. One will include the name of the production database
on the command line, and the other will include the name
of the test database.

Another situation where this technique is useful is with a
traveler who uses a notebook computer while on the road.
By passing the database alias or path on the command
line, you enable the user to employ a copy of the database
on the local hard drive while traveling, and the production
database on the network when he or she is in the office.
To get a path from the command line, use the following code in
your main form’s OnCreate handler.

with Database1 do
begin

Connected := False;
Params.Clear;
Params.Add('Path=' + ParamStr(1));
Connected := True;

end;

To pass an alias name on the command line, change the code
as follows:

with Database1 do
begin

Connected := False;
AliasName := ParamStr(1);
Connected := True;

end;
Figure 3 shows an example of a Windows 95 shortcut that
starts an application named PHONE.EXE and passes an alias
name, PhoneNet, on the command line.

Conclusion
You should write your Delphi programs to make conversion to
a client/server architecture as easy as possible. It takes little effort
and can save many hours of conversion and debugging time
later on. Even if you do not convert the program to client/serv-
er, using a Globals unit (instead of sprinkling literal values
throughout your code), will pay dividends in both readability
and maintainability. In addition, using a Database component
enables you to change your data’s location at run time. ∆
Delphi Informant April 1996 26

Informant Spotlight

By James Hofmann

The Readers Speak
1996 Delphi Informant Reader’s Choice Awards
This month, however, we turn the tables. It’s time to voice your opinion and this is the
result: The First Annual Delphi Informant Reader’s Choice awards.

We asked you to pick your favorites from nearly 100 products in 12 categories. And you
responded, sending ballots by fax, e-mail, the World Wide Web, and even snail mail. As
expected, some categories were highly competitive, with winners determined by few
votes. In others, precedents have been set by establishing clear leaders in the Delphi add-
on market.

But enough preamble; let’s cut to the chase.

Product of the Year
With the most votes overall, this year’s Product of the Year is Woll2Woll Software’s
InfoPower. Woll2Woll Software began by producing Paradox-specific tools, and leapt into
the Delphi tools market early, releasing InfoPower just months after Delphi 1.0 shipped.
For more information about InfoPower, see “Best VCL” below, and the sidebar
“InfoPower Selected as Product of the Year” on page 29.

The Reader’s Choice Awards proved to be highly competitive. In fact, the vote was so close
for Product of the Year that we decided to give the second place finisher — Borland’s
InterBase server — an Honorable Mention award.

Best Delphi Book
Two books clearly dominated
the Best Book category. Both
from SAMS Publishing,
Delphi Developers Guide, by
Xavier Pacheco and Steve
Teixeira, took first, narrowly
beating Charles Calvert’s
Delphi Unleashed.

“If you’re serious about
Delphi, you need this

S ince its premiere in April of 1995, Delphi Informant has endeavored to
bring you current information about the products and services available

to the Delphi developer community. Each month’s issue features Delphi-
centric product announcements and industry news in our “Delphi Tools”
and “Newsline” columns. DI also regularly features book reviews and
product reviews in our respective “TextFile” and “New & Used” columns.

Book

Delphi
Developer’s
Guide

33%

29%

12%

11%

Delphi Unleashed

Mastering
Delphi

Delphi: A
Developer’s
Guide

Delphi Programming
EXplorer — 5%

Delphi Programming
for Dummies — 4%

Teach Yourself Delphi
in 21 Days — 3%

Delphi How-To — 3%
Delphi Informant April 1996 27

Informant Spotlight

Database Server

InterBase 52%

19%

17%

8%

Microsoft SQL

Sybase

Informix — 4%
book,” said Tim Feldman in his review of Delphi
Developers Guide, in the November 1995 DI. “In 22 chap-
ters, it covers every major area of Windows ... program-
ming using Delphi.”

And while perhaps not on the top shelf, two other Delphi
books made a very good showing. From Sybex, Marco
Cantu’s Mastering Delphi, and from M&T Books, Delphi: A
Developer’s Guide by Bill Todd and Vince Kellen, finished
third and fourth respectively.

Best VCL
Besides being Product of the Year, Woll2Woll Software’s
InfoPower got the nod as Best VCL. A collection of data-
aware components that enhance Delphi’s existing VCL
components, InfoPower includes an enhanced data grid,
database filtering, lookup combo boxes, expanding memo
dialog boxes, incremental search components, and more.
VCL

InfoPower 47%

16%
12%

7%

Orpheus

Light Lib
Business VCL

Crystal
Reports VCL

Power Controls — 5%

Light Lib Images VCL — 5%

VisualPROs — 4%

Other — 4%

Oracle

Database CASE Tool

InfoModeler 50%

27%

16% System
Architect

Chen ER-Modeler — 7%
Blow the dust off your August 1995 DI for a detailed look
at InfoPower’s unique features. In his review, Joseph Fung
called InfoPower’s components “complete and well thought
out, significantly enhancing the development process.” It
appears you agree. In one of the more populated categories,
Woll2Woll carried a whopping 47 percent of the votes.

In the second tier of popularity, TurboPower’s Orpheus and
DFL Software’s Light Lib Business VCL, took second and
third places respectively.

Best VBX
Given the variety of VBXes, it’s no surprise the competi-
tion was stiff in this category. Yet when all was said and
done, Visual Components’ Visual Developers Tool Suite
edged out its opponents with 30 percent of the total votes.
VBX

Visual
Developers
Tool Suite

30%

26%
20%

15%

Communications Library 3.0

ImageKnife/VBX

Media
Developer 2.0

ImageBASIC
for Delphi — 5%

GigaSoft ProEssentials — 4%
A close second, MicroHelp’s Communications Library 3.0
acquired 26 percent of the vote, while Media Architects’
ImageKnife/VBX took third with 20 percent.

Best Database Server
In addition to receiving Honorable Mention for its close sec-
ond-place finish as Product of the Year, Borland
International’s InterBase secured 52 percent of the vote in the
Best Database Server category.
Borland’s InterBase 4.0 Workgroup Server has had a great
year. In its biggest sale ever, Borland closed a deal with the US
Army to use InterBase in its Advanced Field Artillery Tactical
Data System (AFATDS). The Army selected InterBase because
of its platform-independence, robustness, and other unique
features. For more information about InterBase, see the side-
bar “InterBase Emerges from the Shadows” on page 30.

Best Database CASE Tool
There’s no doubt about your choice as Best Database CASE
Tool. Half of you agreed that Asymetrix Corporation’s
InfoModeler is the best way to automate database creation
and maintenance. Asymetrix shipped InfoModeler 1.5 in
October of 1994, adding connectivity to several databases
including Informix, Ingres, Sybase, and Visual dBASE.
Version 1.5 also incorporates model import/export, and two
new tools: Fact Assistant and Verbalizer.
S-Designor
S-Designor from SDP Technologies came in second place,
followed by Popkin Software’s System Architect, and Chen &
Associates’ Chen ER-Modeler.

Best Installation Software
To the finish, the Best Installation Software category was one
of the tightest races. Three products dominated the category:
InstallSHIELD from InstallShield Corporation finished first,
Delphi Informant April 1996 28

Installation Software

InstallSHIELD 30%

26%

14%
4%

Eschalon Setup Pro

PC-Install

Sax Setup Wizard

26%

Wise Installation
System

Informant Spotlight

Training

Softbite
International

44%

InfoCan
Management — 8%

The DSW
Group Ltd — 7%

GenoTechs — 7%

25%

The 4GL Consulting
Group Ltd. — 3%Optimax — 3%

Others — 3%
narrowly besting Great Lakes Business Solutions’ The Wise
Installation System, and Eschalon Development’s Eschalon
Setup Pro.

Recently, InstallShield Corporation and Borland
International, have collaborated to create a software deploy-
ment toolkit, InstallShield Express, for Borland’s C++
Development Suite. Borland is also working exclusively with
InstallShield Corporation to provide software deployment
solutions for all other Borland products, including Delphi
2.0, Visual dBASE, and Paradox 7.

Reviewed by Micah Bleecher in the February 1996 DI, The
Wise Installation System features full system access, a custom
InfoPower Selected as Product of the Year
dialog box editor, multimedia support, Windows 95 support,
and notably, specific Borland Database Engine (BDE) sup-
port, among others.

You obviously consider Eschalon Setup Pro a worthy installation
tool. So do AT&T, DOW, Kodak, Electronic Arts, Macromedia,
Polaris, Sprint, Xerox, and the Army Corps of Engineers, all of
whom have made it their standard installation tool.

Best Training
Established in 1988, Softbite International has become known
not only as a leader in software training, but in consulting as well.
You chose Softbite as Best Training organization, giving it 44 per-
cent of your votes. Oregon-based Grumpfish Incorporated made
a strong second place showing with 25 percent of the votes.
Grumpfish
Still expanding, Softbite recently added accounting services.
Regarding their 1996 agenda, Softbite founder Kevin Smith
said, “We’ll increase support for Delphi and stay on the
developer side of Paradox 7.”

Best Reporting Tool
All questions have been answered about the Best
Reporting Tool — Crystal Reports from Crystal
Services/Seagate Software is the clear winner. The recently
released version, Crystal Reports 4.5, includes a Delphi
VCL, a full-featured OLE (OCX) control, a 32-bit Report
Engine DLL, the ability to drill down on graphs, new
Lotus Notes and Excel 5.0 export formats, and the ability
to save report options with the report.
Reporting Tools

Crystal
Reports

44% 16%

ReportPrinter
31%

ReportSmith

R&R Report Writer — 5%

Quick Reports — 4%
These are some of the features that keep Crystal Reports a
leader in the reporting tool market, and the winner of the
Best Reporting Tool with 44 percent of the votes. Borland
International’s ReportSmith finished a healthy second, and
Nevrona Designs’ ReportPrinter took third place.
Delphi Informant readers selected Woll2Woll Software’s
InfoPower as their favorite Delphi add-in product by casting
more votes for it than any other product in any category.

Woll2Woll reviewed a beta version of Delphi in late 1994
with hopes of creating a Delphi tool. They wanted to help
database developers familiar with products like Paradox for
Windows feel more productive with Delphi. In their market
research, Woll2Woll found database developers didn’t want to
compromise the quickness or functionality of their applica-
tions, but wanted the speed of true .EXE files.

The InfoPower suite includes 15 visual and non-visual data-
aware Delphi components, designed for 16- and 32-bit
Windows database applications. The suite features an
enhanced data-aware grid that supports fixed columns, check-
boxes, embedded multi-field lookup combo boxes, dynamic
cell coloring, multi-line titles, memo display, and editing. It
also includes customizable dialog boxes for locating field val-
ues in a table, query, or query-by-example (QBE), where
searches can be case-sensitive, pattern based, or incremental.

InfoPower also provides database lookup facilities and customiz-
able dialog boxes that can be attached to any event. Additionally,
InfoPower includes a QBE component that operates just as its
Paradox counterpart, as well as a Table component that provides
data filtering capabilities.

Woll2Woll is currently working on InfoPower 2.0 which they
expect to ship in May, 1996. New functionality will include
field validation, visual filtering and querying, and the ability
to print the contents of a grid. The new version will also fea-
ture enhancements to existing InfoPower components, such as
multi-record selection and bitmap support in the grid compo-
nent, and other developer-requested features and functions.
Delphi Informant April 1996 29

Informant Spotlight

Windows DLL

DynaZIP 26%

14%

9% CrystalCOMM
for Windows

Other — 4%

19%

ProtoView Interface
Component
Set — 7%

GigaSoft ProEssentials — 4% WYSIWYG Form and
Report Designer — 5%
Best Version Control
An established software configuration management tool,
INTERSOLV’s PVCS Version Manager commands the Best
Version Control category with 67 percent of the ballots.
PVCS Version Manager enables a team of programmers to
track file changes during application development.
Developers can check out and modify source code, executa-
bles, utilities, and documentation files.
Version Control

PVCS 67% 16%

13%

MKS Source
Integrity

Versions

4%

Microsoft Visual Source Safe

16%Communications
Library 3.0

Restruct.DLL
SilverWare Windows
Communications Tool Kit
INTERSOLV has recently announced that Borland will
incorporate PVCS Version Manager into the Borland C++
5.0 Development Suite.

Best Delphi Add-In
In another hotly-contested category, SuccessWare
International and Woll2Woll Software battled to the end for
Best Delphi Add-In. With an onslaught of last minute votes,
SuccessWare International’s Apollo Rock-E-T emerged as
your favorite with 26 percent of the votes.
Delphi Add-In

Apollo
Rock-E-T

26%

15%
10%

ezDialogs
for Delphi

Delphi/Link for
Lotus Notes

HyperTerp/Pro
— 7%

Conversion
Assistant — 7%

Graphics Server — 4%

Codewright — 3%

Other — 8%

16%

Multi-Edit
for Windows

VB2D Translator — 4%

InterBase Emerges from the Shadows
Woll2Woll Software’s ezDialogs for Delphi received 16 per-
cent of the votes. And in a near-tie for second place,
American Cybernetics’ Multi-Edit for Windows took third
with 15 percent of the votes.

Of the 12 categories, the race for Best Delphi Add-In was the
most crowded with over 13 products receiving votes. Other
notables included: Borland/Brainstorm Technologies’
Delphi/Link for Lotus Notes, HyperAct’s HyperTerp/Pro,
and EarthTrek’s Conversion Assistant.

Best DLL
Giving it 22 percent of the votes, you named Inner Media’s
DynaZip as Best DLL. Balloting was tight however, and
MicroHelp’s Communications Library 3.0 came in a close
second with 19 percent of the votes.
Released during the last quarter of 1995, DynaZip features
16- and 32-bit versions for Windows, Windows 95, and
Windows NT, plus a new DZ_EASY interface. DynaZip also
offers OCX and VBX support.

The third and fourth place finishers — SilverWare’s
Windows Communications Tool Kit, and TrayMar Software’s
Restruct.DLL — made strong showings as well.

Best Windows Help Authoring Tool
The Best Help Authoring Tool category had two clear front-
runners, but Blue Sky Software’s RoboHELP came in first
with 46 percent of the votes. For more information about
RoboHELP, pull out the January 1996 issue of DI and help
yourself to Gary Entsminger’s review.
InterBase’s strong showing in the Delphi Informant Reader’s
Choice Awards is just another example of its recent, rapid rise
into prominence. Considered the “Crown Jewel” of the Ashton-
Tate acquisition, InterBase nevertheless remained obscure and
isolated from the rest of the Borland product line. Its bundling
with the phenomenally successful Delphi changed all that.

Borland has finally begun a tighter integration of InterBase with
the rest of their products, propelling InterBase forward in sales
and market penetration. Delphi 2.0 Client/Server Suite is the
latest effort in Borland’s “Trojan horse” strategy to entice Delphi
developers to embrace InterBase. The new Suite includes not
only the new Windows 95/NT Local InterBase server, but also
the multi-user InterBase NT Server for prototyping and devel-
oping multi-user applications. In addition, a new Event Alerter
component has been added to the VCL, allowing developers
much tighter integration to the InterBase engine.

Borland isn’t content with Delphi/InterBase synergies, how-
ever, and has rumored that future versions of their Java tools,
code named “Latte,” may include InterBase or InterBase con-
nectivity as well. The endorsement by Borland’s InterBase of
the new JDBC standard by Sun Microsystems, Inc. is further
evidence that something formidable is brewing.

With growth of InterBase sales close to 40% in 1996, and
new versions available almost every month, it looks like
Borland’s evolution from desktop tools provider to
client/server provider is succeeding.
Delphi Informant April 1996 30

Help Authoring Tool

RoboHELP 46%

39% ForeHelp

Other — 4% Windows Help
Magician Pro — 6%

DocToHelp — 5%

Informant Spotlight

Best Book
Delphi Developer’s Guide
Xavier Pacheco & Steve
Teixeira
SAMS Publishing
ISBN: 0-672-30704-9
Phone: (800) 428-5331
Web Site: http://www.mcp.com

Best VCL
InfoPower
Woll2Woll Software
2217 Rhone Drive
Livermore, CA 94550
Phone: (800) 965-2965 or
(510) 371-1663
Fax: (510) 371-1664
CompuServe: GO
WOLL2WOLL
Web Site: http://woll2woll.com

Best VBX
Visual Developers Tool Suite
Visual Components, Inc.
15721 College Boulevard
Lenexa, KS 66219
Phone: (913) 599-6500
Fax: (913) 599-6597
Web Site: http://visualcomp.com

Best Database Server
InterBase
Borland International Inc.
100 Borland Way
Scotts Valley, CA 95066-3249
Phone: (408) 431-1000
Web Site: http://www.bor-
land.com

Best Database CASE Tool
InfoModeler
Asymetrix Corporation
110 110th Ave. NE, Suite 700
Bellevue, WA 98004-5840
Phone: (800) 448-6543 or
(206) 462-0501
Fax: (206) 454-7696
Web Site: http://www.-
asymetrix.com

Best Installation Software
InstallSHIELD
InstallShield Corporation
1100 Woodfield Road
Suite 108
Shaumburg, IL 60173
Phone: (800) 374-4353 or
(847) 240-9111
Fax: (847) 240-9120
E-Mail: Internet: info@-
installshield.com
Web Site: http://www.-
installshield.com

Best Training
Softbite International
33 N Addison Road, #206
Addison, IL 60101-8401
Phone: (708) 833-0006
Fax: (708) 833-0584
Web Site: http://www.soft-
bite.com

Best Reporting Tool
Crystal Reports
Crystal Services/Seagate
Software
1095 West Pender St.,
4th Floor
Vancouver, BC Canada
V6E 2M6
Phone: (800) 663-1244 or
(604) 681-3435
Fax: (604) 681-2934
CompuServe: GO REPORTS
Web Site: http://www.sea-
gate.com/software/crystal

Best Version Control
PVCS
INTERSOLV
1700 NW 167th Place
Beaverton, OR 97006
Phone: (800) 547-7827 or
(503) 645-1150
Fax: (503) 645-4576
E-mail: Internet: pvcsinfo@-
intersolv.com
Web Site: http://www.inter-
solv.com

Best Delphi Add-In
Apollo Rock-E-T
SuccessWare
27349 Jefferson Avenue,
Suite 111
Temecula, CA 92590
Phone: (800) 683-1657 or
(909) 699-9657
Fax: (909) 695-5679
CompuServe: GO SWARE

Best DLL
DynaZIP
InnerMedia, Inc.
60 Plain Road
Hollis, NH 03049
Phone: (800) 962-2949 or
(603) 465-3216
Fax: (603) 465-7195
E-Mail: CIS: 70444,31

Best Help Authoring Tool
RoboHelp
Blue Sky Software Corp.
7777 Fay Ave., Suite 201
La Jolla, CA 92037
Phone: (800) 677-4946 or
(619) 551-2485
Fax: (619) 551-2486
Web Site: http://www.blue-
sky.com

Contacting the Winners
ForeFront’s ForeHelp dominated the other contenders, plac-
ing second with 39 percent.

Thank You
In the final analysis, third-party Delphi products are only pro-
ductive when they enable developers to “get the job done.”
This makes you — the greater Delphi community — the only
true arbiter. Thanks to you, the Delphi community now has a
good idea of the products available — and which are most
popular.

We would also like to thank the vendors for spending the
time and money to develop such excellent Delphi products.
The Delphi third-party marketplace is buzzing, and the
excitement will only increase when Delphi 2.0 hits the
shelves. We’re looking for many new Delphi products in the
coming year, including OCXes, Web-enabling components,
and many more we cannot even envision. ∆
Delphi Informant April 1996 31

James Hofmann is Assistant Editor for Delphi Informant.

Dynamic Delphi
Delphi 1.0 / Object Pascal

By Andrew J. Wozniewicz

DLLs: Part II
Completing the Example Dynamic Link Library
Last month, we introduced dynamic link libraries (DLLs) and how to cre-
ate them using Delphi. As part of that interactive discussion, we created

the sample unit, XSTRING.PAS, to contain five string-handling functions:
FillStr, UpCaseFirstStr, LTrimStr, RTrimStr, and StripStr.
In this installment, we’ll create the last three
functions needed to fill XSTRING.PAS,
then learn to export DLLs. [If you haven’t
built XSTRING.PAS, refer to “DLLs: Part I”
in the March 1996 Delphi Informant.]

The LTrimStr Function
Often, you’ll need to ensure that the string
you’re working with begins with a mean-
ingful (i.e. non-blank) character. If there
are any leading blanks, you may need to
remove them.

For example, the standard procedure Val
converts strings of digits into their numeric
representations and requires that the first
character of the argument string is a valid,
non-blank digit. Before you can pass a
string of digits to Val for conversion, you
must trim the string’s leading blanks.

The LTrimStr function is designed to per-
form the “trimming” of the leading blanks
on the left side of the passed string argu-
ment. Enter the following declaration inside
the interface section of the XString unit:

function LTrimStr(const S: string):
string; export;

The only parameter passed to LTrimStr, S, is
the string to be trimmed. The result returned
is the same string, but without leading
blanks. If there are no leading blanks in S,
then LTrimStr returns the argument string
unchanged.
Here’s how LTrimStr is implemented in the
implementation section of the XString unit:

function LTrimStr(const S: string):
string;
var

Index, MaxIndex: Integer;
begin

Index := 1;
MaxIndex := Length(S);
while (Index <= MaxIndex) and

(S[Index] = ' ') do
Inc(Index);

Result := Copy(S,Index,
MaxIndex-Index+1);

end;

The LTrimStr function relies on a while loop
to determine the position of the first non-
blank character in the string. The loop termi-
nates when a non-blank character is found or
when the loop reaches the end of the string.

This last consideration is especially impor-
tant to handle if the function is to be a
robust, production-quality subroutine. You
must ensure proper behavior with a passed
argument string that contains no leading
blanks, or is entirely blanks. In the former
case, the string is returned unchanged. In the
latter case, the result of trimming all leading
blanks from a string consisting of only
blanks is returned: a null (empty) string.

The loop counter, Index, is initialized to
point to the beginning of the argument
string. To ensure that the loop doesn’t run
past the end of the string, a guardian value,
Delphi Informant April 1996 32

Dynamic DelphiDynamic Delphi
MaxIndex, is established. MaxIndex is the index of the string’s
last character, and is equal to its original length.

After the index of the first non-blank character of the argu-
ment string is determined, the portion of the argument
string S containing the leading blanks is removed, and the
remainder is returned as the function’s result.

The standard string function Copy is used to select only the
meaningful, non-blank portion of the original argument
string S, omitting the leading blanks from the function’s
result, as required.

Here’s how LTrimStr is called in an application:

var
S1, S2, S3 : string;

begin
...
S1 := LTrimStr(' Teach Yourself Delphi');
S2 := LTrimStr(' 123');
S3 := LTrimStr(' 456 ');
...

end;

After the assignment statements are executed:
S1 contains, “Teach Yourself Delphi”
S2 contains, “123”
S3 contains, “456 ”

Note that LTrimStr has no effect on trailing blanks. This is
the job for the next trimming function, RTrimStr.

The RTrimStr Function
In concept, RTrimStr is similar to LTrimStr. Instead of
removing the leading blanks, however, RTrimStr removes
any trailing blanks, ensuring that the resulting string is as
short as possible. A typical use of the RTrimStr function is
to prepare a string for conversion to a number using the
Val procedure.

Enter the following declaration inside the interface section of
the XString unit:

function RTrimStr(const S: string): string; export;

As you can see, the declaration of RTrimStr is nearly identical
to that of LTrimStr. RTrimStr is implemented as follows in
the implementation section of the XString unit:

function RTrimStr(const S: string) : string;
var

Index: Integer;
begin

Index := Length(S);
while (Index > 0) and (S[Index] = ' ') do

Dec(Index);
Result := Copy(S,1,Index)

end;

The trick to implementing RTrimStr that makes it even sim-
pler than LTrimStr, lies in the while loop. This code deter-
mines the position of the last non-blank character of the string
argument, runs “backward” from the end of the string, and
proceeds toward the beginning.

When the loop counter Index — initialized to mark the argu-
ment string’s last character — indicates a position of a non-
blank character in the argument string, the loop has counted
all trailing blanks and terminates.

In case the argument string consists of blanks only, the loop
condition checks if the iteration has reached the beginning of
the string, indicated by an Index value of less than 1. This
condition also terminates the while loop.

After the while loop is finished, the Index variable holds the
position of the argument string’s last non-blank character.
The Copy function is then used to extract the non-blank lead-
ing portion of the string and return it to the caller as the
function result.

The RTrimStr function can be used as follows:

var
S1, S2, S3: string;

begin
...
S1 := RTrimStr('Teach Yourself Delphi ');
S2 := RTrimStr('123 ');
S3 := RTrimStr(' 456 ');
...

end;

After the assignment statements execute:
S1 contains “Teach Yourself Delphi”
S2 contains “123”
S3 contains “ 456”

RTrimStr removes the trailing blanks from the argument, but
the leading blanks remain.

The StripStr Function
The last string-handling subroutine you’ll implement inside your
DLLFirst library is StripStr. It removes all blanks — whether they
are leading, trailing, or embedded within the argument string —
and returns a result of all non-blank characters. The declaration
of the StripStr function is similar to that of the others:

function StripStr(const S: string): string; export;

Since the number of iterations is known, StripStr uses a for
loop for top performance. The loop must run through all the
characters in the argument string, removing any blanks as it
visits the consecutive character locations. Here’s the imple-
mentation of the StripStr function:

function StripStr(const s: string): string;
var

Index : Integer;
begin

Result := '';
for Index := 1 to Length(S) do

if S[Index] <> ' ' then
Result := Result + S[Index];

end;
Delphi Informant April 1996 33

Andrew J. Wozniewicz is president and founder of Optimax Development
Corporation (http://www.webcom.com/~optimax), a Chicago-based consultancy
specializing in Delphi and Windows custom application development, object-ori-
ented analysis, and design. He has been a consultant since 1987, developing pri-
marily in Pascal, C, and C++. A speaker at international conferences, and an
early and vocal advocate of component-based development, he has contributed
articles to major computer industry publications. Andrew can be contacted on
CompuServe at 75020,3617 and on the Internet at optimax@optidevl.com.

Dynamic Delphi
The for loop visits every character position of the argu-
ment string S, and determines if the character is a blank.
If it is, the current character is appended from the argu-
ment string to the function’s Result string. Thus, the result
string is accumulated one character at a time, omitting
blank characters in the process.

It’s important to note that Result is an implicit variable of
the same type as the function’s return type — string in
this case — and is automatically available for every Object
Pascal function. Delphi automatically initializes Result to
an empty string. This ensures that the result is defined
even if the argument string is empty and the for loop is
never executed.

Here’s an example of StripStr in use:
var

S1, S2, S3, S4 : string;
begin

...
S1 := StripStr(' Teach Yourself Delphi ');
S2 := StripStr('123 ');
S3 := StripStr(' 456 ');
S4 := StripStr(' 789');
...

end;

Following execution of the assignment statements:
S1 contains “TeachYourselfDelphi”
S2 contains “123”
S3 contains “456”
S4 contains “789”

Using the XString Unit
And that does it! You’ve implementing the XString unit
which now contains five useful string-handling functions. To
help you verify the code you entered is complete and valid,
Listing Five (beginning on page 35) shows the entire unit.
Comments were added to make the code more readable and
understandable.

Each of the functions implemented in the unit’s imple-
mentation section — FillStr, UpCaseFirstStr, LTrimStr,
RTrimStr, and StripStr — is listed in the interface section.
In turn, each function is made exportable by placing the
export directive after the function declaration. This makes
it possible to include the subroutines in an exports clause
and make them available outside the DLL.

With the functions implemented, now it’s time to com-
plete the DLL project by actually exporting the functions
so they are visible and accessible outside DLLFIRST.DLL.

Exporting String Functions
To reiterate, you must list the functions you want to make
available to client applications inside an exports clause of
your library source code file.

First, enter the following code (select View | Project Source

from Delphi’s menu, if necessary, to return the main
library file):
library DLLFirst;

uses
WinTypes,
XString in 'XSTRING.PAS';

exports
FillStr,
UpCaseFirstStr,
LTrimStr,
RTrimStr,
StripStr;

begin
end.

This code shows you how to make the routines implement-
ed in the XString unit visible to applications using DLL-
FIRST.DLL. The XString unit is listed in the uses clause of
the library module to make its interface visible inside the
library file so you can reference the names of the subroutines
you want to export.

Because our five string-handling routines are listed in the
exports clause, their names will be available so that applica-
tions can use the library’s services. Make sure you recompile
the DLLFirst project so the executable DLL reflects all your
most recent changes.

Looking Ahead
Now that we’ve successfully implemented a DLL with
Delphi, we’ll next turn to the application side of the
dynamic-linking equation.

The key to accessing externally implemented subroutines
(e.g. a DLL function) is to create import units. Any appli-
cation that wants to use the DLL’s services must have the
appropriate import reference in its uses clause. The
WinProcs unit, for example, imports the subroutines
defined in three Windows DLLs that comprise the
Windows API: USER, KERNEL, and GDI. To use subrou-
tines implemented in these DLLs, you must include
WinProcs in the uses clause of your application.

In Part III of this series, we’ll create a corresponding import unit
for the custom DLLFirst library. We’ll also discuss the external
directive, interface with DLLFirst, import subroutines by ordinal
number, and build a sample application. See you then. ∆

This article was adapted from material for Teach Yourself
Delphi in 21 Days [SAMS, 1995], by Andrew Wozniewicz.
Delphi Informant April 1996 34

Dynamic Delphi
Begin Listing Five — The XString Unit
unit XString;
{ A collection of string-handling routines to comple-
ment

those from the SysUtils unit }

interface
function FillStr(C : Char; N : Byte): string; export;
{ Returns a string with N characters of value C }
function UpCaseFirstStr(const s: string): string; export;
{ Capitalizes the first letter of every word }
function LTrimStr(const S: string) : string; export;
{ Trims the leading blanks }
function RTrimStr(const S: string) : string; export;
{ Trims the trailing blanks }
function StripStr(const s: string): string; export;
{ Strips all blanks }

implementation

function FillStr(C : Char; N : Byte): string;
{ Returns a string with N characters of value C }
begin

FillChar(Result[1],N,C);
Result[0] := Chr(N);

end;

function UpCaseFirstStr(const s: string): string;
{ Capitalizes the first letter of every word }
var

Index: Byte;
First: Boolean;

begin
Result := S;
First := True;
for Index := 1 to Length(s) do

begin
if First then

Result[Index] := UpCase(Result[Index]);
if Result[Index] = ' ' then

First := True
else

First := False;
end;

end;

function LTrimStr(const S: string): string;
{ Trims the leading blanks }
var

Index, MaxIndex: Integer;
begin

Index := 1;
MaxIndex := Length(S);
while (Index <= MaxIndex) and (S[Index] = ' ') do

Inc(Index);
Result := Copy(S,Index,MaxIndex-Index+1);

end;

function RTrimStr(const S: string) : string;
{ Trims the trailing blanks }
var

Index: Integer;
begin

Index := Length(S);
while (Index > 0) and (S[Index] = ' ') do

Dec(Index);
Result := Copy(S,1,Index)

end;

function StripStr(const s: string): string;
{ Strips all blanks }
var

Index : Integer;
begin

Result := '';
for Index := 1 to Length(S) do

if S[Index] <> ' ' then
Result := Result + S[Index];

end;

end.
End Listing Five
Delphi Informant April 1996 35

Visual Programming
Delphi 1.0 / Object Pascal

By Walker Lipscomb

Who Owes Whom?
Creating an Attractive and Intuitive User Interface

Figure 1: The S
Have you ever spent a relaxing vacation at the beach with several
friends, only to have the idyllic experience spoiled at the end by a heat-

ed argument over who owes whom?
This article provides a software solution to this
problem. Along the way, the sample program
illustrates several examples of Delphi compo-
nents and features — what they are, and how
they can be used to construct a user interface
that is both attractive and intuitive to use. As
Marshal McLuhan wrote, “The Medium is the
Message,” and in this case, the medium is a
program, which by its nature, will be used
only occasionally. However, this program will
be indispensable on those occasions.

The Scenario
Four families of varying sizes rent a large beach
house for a week. One couple pays the US$800
deposit, and another pays the remaining
US$2600 due on arrival. One family picks up
US$125 worth of drinks at the discount liquor
store. During the week, each family buys gro-
ceries several times (and keeps the receipts).

As the week progresses, other friends and
relatives show up to stay a few days. On
ummary page.
Thursday, some of the group charters a
fishing trip and others rent a ski boat. At
the end of the week, there is a minor argu-
ment about whether to count the kids at
“full fare.” The family with the most kids
points out that the kids slept four to a
room, and did not have any of the drinks
(or so they think). The family without
children notes that they weren’t the ones
who left the refrigerator door open
overnight with US$150 worth of shrimp
in it (or made that mess on the carpet). A
compromise is reached: children are to be
counted at 50 percent for rent and 75 per-
cent for food. Now — who owes whom?

Who Owes Whom (WOW) is a Delphi
program designed to simplify the job of
allocating shared expenses and determining
who should pay whom, and how much.
Information is arranged on four notebook
pages. The Summary page (see Figure 1) is
the primary mechanism for entering fami-
lies and charges. Use of the Details by
Family page (see Figure 2), the Rent
Calculations page (see Figure 3), and the
Food Calculations page is not required,
but they will help in the inevitable and
unenviable task of explaining to people
why they owe so much. You move to each
page by pressing the appropriate notebook
tab with the mouse, or by holding down
A and pressing the underlined letter.

Operation
Follow these steps to enter a simple scenario
(Rent and Food only). Operational details
are provided in the usual Windows Help file:

If the Summary Page is not displayed,
press AS to display it.
Delphi Informant April 1996 36

Figure 2 (Top): The Details by Family page.
Figure 3 (Bottom): The third notebook page is for calculating rent.

Visual Programming
Enter the first family’s name in the Family Name column
at the left of the grid.
Under Rent Nights/Adult, enter the number of adults multi-
plied by the number of nights they should be charged rent
(e.g. 2 adults for 7 nights equals 14 nights).
Similarly, enter the appropriate information into Rent

Nights/Child, Food Nights/Adult, and Food Nights/Child.
Using the b to move to each subsequent row, enter the
remaining families.
Press the Payments button (or
AP) to display the Payments
form (see Figure 4).
For each payment, use the
drop-down edit boxes to select
the appropriate family who
made the payment, and the
correct category (Rent or
Food). Enter the amount and
press OK or J.
Press the Cancel button or E to
return to the Summary page.
Note that a status box at the bottom of the screen suggests
re-calculation. Press the Calculate button (or AC or
9) to calculate who owes whom.

Figure 4: Calculating
food expenses per family.
Design Considerations
By its nature, WOW is not likely to be used on a huge
database or by multiple simultaneous users. Therefore, lit-
tle consideration was given to efficiency or multi-user
access. Due to Delphi’s inherent speed, WOW does run
quite nicely with up to a couple of hundred families
entered — surely larger than any conceivable beach party
— even if you invited the Kennedys.

Since this program will probably be running on a laptop at
the beach or in the mountains, printing capability was not
deemed a requirement. (It’s bad enough that you’re carrying
your laptop on vacation, much less a printer!) On the other
hand, WOW will probably be run only once or twice a year,
and without a manual handy. Thus, the screens should pro-
vide sufficient visual clues for easy operation. This also makes
having adequate context-sensitive help a requirement. Since
laptop pointing devices are often less than optimal, it must
be easy to perform all operations from the keyboard.

Now, we’ll discuss the implementation of WOW in Delphi,
and how that implementation satisfies the design goals.

Implementation
TTabbedNotebook. Delphi offers myriad visual components
“out of the box” and a virtually unlimited number of add-in
VBX controls are available. Many additional Delphi compo-
nents are already on the market, and the number is growing.
The trick is to choose the right mix of components that will
maximize usability.

The TabbedNotebook component (TTabbedNotebook) is the
primary “motif ” for WOW. TabbedNotebooks offer the neo-
phyte user a familiar real-world visual metaphor, and can
immediately show the user what major application areas are
available — in this case the Summary, Details by Family,
Rent, and Food calculations. A TabbedNotebook effectively
provides sub-forms that can be used to change the type of
information shown in an area of the main screen. In the
design phase, the TabbedNotebook will be typically sized to
occupy a large portion of the form — a quarter to a half or
more. Then, to create the multiple sub-forms, you add two
or more Page names to the Pages property of the component.

As many other visual components (e.g. labels, grids, edit
boxes, etc.) as desired can be placed on each page. At run
time, when the user or the program changes the notebook
page, the components on the selected page are displayed and
the components on the other pages are hidden.

Note that while “page” is the correct programming terminol-
ogy, the Help file uses the term “sheets.” If the user thinks in
terms of pages, he or she will naturally expect to move from
one to the other by pressing z and x. (Wouldn’t
you?) The Windows standard use for these keys is to “scroll
grid” to a new set of records, and we happen to need that
functionality. Therefore, WOW provides the 6 / V6
keys to rotate among Notebook “sheets,” and accelerator keys
Delphi Informant April 1996 37

Visual Programming

Figure 5: The DepartNotebookPage procedure is called by the
OnChange event.

procedure TMainForm.DepartNotebookPage;
begin

case TabbedNotebook1.PageIndex of
0: begin

CurrentFamilyName:=
FamilyTableFamilyName.AsString;

if FamilyTable.State<>dsBrowse then
FamilyTable.Post;

end;
1: begin

CurrentFamilyName:=
FamilyTable2FamilyName.AsString;

if FamilyTable2.State<>dsBrowse then
FamilyTable2.Post;

if PaidTable.State<>dsBrowse then
PaidTable.Post;

end;
2: begin

CurrentFamilyName:=
RentTableFamilyName.AsString;

if RentTable.State<>dsBrowse then
RentTable.Post;

end;
3: begin

CurrentFamilyName:=
FoodTableFamilyName.AsString;

if FoodTable.State<>dsBrowse then
FoodTable.Post;

end;
end;

end;

procedure TMainForm.ArriveNotebookPage;
begin

case TabbedNotebook1.PageIndex of
0: begin

SyncToFamily(FamilyTable,CurrentFamilyName);
FamilyGrid.SetFocus;

end;
1: begin

LoadFamilyNames(FamilyTabSet.Tabs);
FamilyTabSet.TabIndex:=

FamilyTabSet.Tabs.IndexOf(CurrentFamilyName);
AdultNightsRentBox.setfocus;

end;
2: begin

SyncToFamily(RentTable,CurrentFamilyName);
RentGrid.SetFocus;

end;
3: begin

SyncToFamily(FoodTable,CurrentFamilyName);
FoodGrid.SetFocus;

end
end;

end;

Figure 6: The OnClick event works with the
ArriveNotebookPage procedure to synchronize each new page
to the same specified family.
to select a page directly. Clicking the appropriate tab with the
mouse works as well, of course.

Two TTabbedNotebook events are particularly important. The
OnChange event occurs before leaving a page, and the OnClick
event occurs after arriving on the new page. In WOW, each
page displays data from the Family table, but each references a
different TTable component. The OnChange event calls the
procedure DepartNotebookPage (see Figure 5) which stores the
Family Name from the “old” page, and posts any outstanding
edits. The OnClick event calls the ArriveNotebookPage proce-
dure that synchronizes the table on the “new” page to the same
family (see Figure 6).

TTabSet. On the Details By Family page, you will see a differ-
ent kind of tab, the TabSet. Unlike the TTabbedNoteBook, the
TTabSet has no “built-in” functionality other than changing
the highlighted tab. You must write code to affect any other
controls. The TabSet could be used to change any value, for
example the color of another component, or to modify the
field’s value in a record. WOW uses TabSet for perhaps its
most obvious use — changing position within a table.

When the table referenced contains a small number of
records, the TabSet is great because the user can immediately
see the available choices. For larger data, however, TabSet
would be a poor choice. Delphi provides scroll keys if all
choices cannot be seen, but scrolling through more than two
page-widths of tabs would be inconvenient to say the least.

TLabel. Labels? Why write about labels in Delphi Informant?
Labels are the Rodney Dangerfield of components — they
get no respect. And, actually they are smarter than they
seem. They provide accelerator keys to set the focus to
another control. These accelerator keys are indicated by
putting an ampersand (&) in the Label’s Caption. Herein lies
the problem: Sometimes you may not want an ampersand in
the Caption to create an accelerator — you want it to be a
plain ol’ ampersand. To display ampersands normally (and
not as accelerators) in a Label component, simply set its
ShowAccelChar property to False. Or if that is unworkable,
simply enter && to let Delphi know you simply want the
ampersand character.

TPopup. The Details by Family page provides a method of
changing payments once they have been entered. Direct
entry works fine for the date and amount, but to change a
payment category by typing it in, the user would have to
remember the exact spelling and punctuation of the desired
category.

A PopupMenu component provides an easy method for
entering the correct category name. Since PopupMenus are
normally accessed by right-clicking, a keyboard alternative is
required to meet our design goals. By providing the Change

Category button, we create the AT accelerator key and
document it at the same time. Similarly the Prior and Next

buttons are included primarily to provide a keyboard
method of accessing the details of other families.

When the PopupMenu is initiated with a right-click, it
appears next to the mouse pointer. When you display it
using the Popup method, you must include the screen coor-
dinates where the menu should appear. On the other hand,
the menu should appear near the Payments grid on the
form, and the user may move the form around on the
screen. The ClientToScreen method (see Figure 7) provides
the needed translation.
Delphi Informant April 1996 38

procedure TMainForm.ChangeCategoryButtonClick(
Sender: TObject);

var
PopupPoint: TPoint;

begin
PopupPoint :=

{ Get SCREEN coordinates }
FamilyDetailPanel.ClientToScreen(

Point (PaymentsPanel.Left+trunc(
{ 2/3 accross panel }
PaymentsPanel.Width*0.66),
{ Mid-way down }
PaymentsPanel.Top+trunc(PaymentsPanel.Height/2)));

CategoryPopup.Popup(PopupPoint.X,PopupPoint.Y);
end;

Figure 7: The ClientToScreen method.

Visual Programming
Conclusion
Designing a pleasing and functional user interface is a matter
of picking the right mix of components for the job and cus-
tomizing those components as needed. Delphi’s extensive set of
user-interface components and infinite capacity for expansion
can provide any component required. Delphi’s strong object
orientation and well-organized programming environment
makes customization of these components easy, and its inher-
ent speed makes the resulting program nimble and efficient. ∆

The Who Owes Whom project is available on the Delphi
Informant Works CD located in INFORM\96\APR\DI9604WL.
Delphi Informant April 1996 39

Walker Lipscomb is an independent developer in the Washington, DC area,
working with both commercial and governmental organizations. Mr Lipscomb
can be reached at (703) 524-9232, or on CompuServe at 74132,2225.

The API Calls
Delphi 1.0 / Object Pascal / Windows API / Perseus VCL

By Karl Thompson

A Walk on the Wild Side
Getting at Windows Secrets Using Windows API
Functions and Perseus
Delphi takes Windows programming to a higher plateau, for the most part
because it hides the complexity of Windows programming. With Delphi’s

component architecture, the Object Pascal developer can easily create an
application by dropping components on a form, setting the initial values of
some properties, and adding code to selected event handlers. Delphi also
makes pointers obsolete for the great majority of applications — no small
feat for a sophisticated optimizing compiler. Undoubtedly however, there will
be times when some coders need to dig in and get into the guts of Windows.
One of Delphi’s strengths is that it allows
programmers easy access to Windows API
functions and data structures. The API func-
tion calls are encapsulated in various Delphi
units. (For more details, click on Delphi’s
Help menu and select Windows API.)

This article will explore some of the API
functions and data structures of the
ToolHelp unit. These API functions enable
you to query Windows about available sys-
tem resources and how those resources are
being used. The sample Walker project (see
Figure 1) demonstrates how to use the
ToolHelp unit to get information about the
currently loaded modules, running tasks, reg-
Figure 1: Walker displays information about the
currently loaded modules, running tasks, the reg-
istered Windows classes, and how memory is
being allocated on the Windows global heap.
istered Windows classes, and how memory is
being allocated on the Windows global heap.
Walker will also do a memory dump of any
global memory block. Both a hex and ASCII
dump can be done for any block up to 64K.
Walker will also provide additional resource
statistics including:

available GDI and user heap,
total available memory and largest avail-
able contiguous memory block,
the number of free items and least-
recently used (LRU) items,
and the number of virtual pages and free
virtual pages.

Note that the Walker program is definitely a
work in progress. Time permitting, we’ll add
additional functionality and robustness in
future articles. And naturally, you are free to
take on the task yourself.

Some Terms Defined
Before covering the program in detail, let’s
review some Windows terminology that
often causes confusion:

A module handle (or more specifically, an
entry in the module table) contains infor-
mation that can be shared by multiple
instances of an application.
A task, or entry in the task database
(TDB), contains information specific to
each execution (instance) of an application.
Delphi Informant April 1996 40

The API Calls
The module table will contain information about program
resources (bitmaps, etc.) while the TDB will contain such
information as the current working directory for a specific
task — thus two executions of a program can have different,
current directories.

To understand the next term, it’s important to first under-
stand a basic Windows concept. Anyone who has pro-
grammed in Windows for long realizes that nearly every visi-
ble interface item is a window. From the perspective of a
Delphi program, a window is (obviously) a window. What
might not be so obvious, however, is that a scrollbar, button,
listbox, checkbox — and about every other display item — is
a window too, as far as Windows itself is concerned.

Why is this important? Windows must be able to send mes-
sages to any of these and other window types (classes). Each
window is created based upon a window class, and the class
tells Windows what procedure is going to process the message.

These are enough terms to get started. Other terms are cov-
ered in the online help included with Walker. For now, let’s
move on and take a look at Walker’s organization.

Walker’s Structure
Walker’s files are organized so that if you need to use the
functionality of the ToolHelp unit, you’ll be able to easily
locate the appropriate initialization code. There is one global
unit, uGlobal.PAS, that initializes all the pointers and
ToolHelp data structures used by Walker. Normally you
would not want to write a function just to initialize a pointer,
particularly if it’s initialized only once. In this case, however,
it was done to clarify how the pointers are initialized.

Even if you don’t understand pointers, but do understand
that the functions in uGlobal return properly initialized
pointers, then you can easily use the ToolHelp unit. Other
files include: the main program module, Walker; the Task
Walker, uTasks; the Class Walker, uClasses; the Module
Walker, uModule; and the Global Heap Walker, uGlobalW.
The unit that handles the display of the global data dump is
wGlobalD. [The source code is too extensive to list in its
entirety. However, it is available on diskette and for down-
load. See end of article for details.]

Module, Task, and Class Walkers
I use the term Walkers because each one iterates, or “walks,”
over the appropriate linked list of data structures maintained by
Windows. Let’s examine the Class Walker first (see Figure 2).
Note that we call the routines that list the classes, Tasks,
Modules, etc. The list of the class structures is maintained in the
user segment’s default local heap.

When you run the Class Walker, you may see classes with
names such as #34XXX. These are integer atoms. Borland’s
WinSight program will provide a translation of these atoms
to string names. Atoms are discussed in the book,
Undocumented Windows, by Andrew Schulman, et al. (see end
of article for details). For now, suffice it to say that an atom is
a 16-bit word and that the Windows atom manager provides
a means for translating an ASCII string into an atom.

The real work for this unit, and the others, occurs in the
OnShow event handler.

procedure TClassesFrm.FormShow(Sender: TObject);
var

OK: Bool;
begin

pOurClassEntry := InitClassEntry(pOurClassEntry);
OK := ClassFirst(pOurClassEntry);
while OK do begin

ListBox1.Items.Add(Format(' %-11s %5.4x %-s',
[GetModuleNameFromHandle(pOurClassEntry^.hInst),
pOurClassEntry^.hInst,
pOurClassEntry^.szClassName]));

OK := ClassNext(pOurClassEntry);
end;
GroupBox1.Caption := ' Module Name hInst Class Name ';
ClassesFrm.Caption := ' ' +

IntToStr(ListBox1.Items.Count) + ' Classes Found ';
end;

First, a pointer called pOurClassEntry is initialized with a call
to InitClassEntry (located in uGlobal). The pOurClassEntry is
of type pClassEntry and is a pointer to a TClassEntry struc-
ture. pOurClassEntry must be initialized before the Class
walk can begin.

The call to InitClassEntry not only initializes a pointer but
also allocates memory on the heap to hold one TClassEntry
structure. One of the requirements for using many of the
ToolHelp data structures is that the structure’s dwSize field
must be initialized to the size of the structure. The Walker
InitXXXX functions also handle this requirement. Notice
that all we have to do is call the Object Pascal function
SizeOf while passing it the data type of the Windows API
structure.

If Walker were to be a truly robust application (i.e. suitable
for commercial distribution), the code should handle the
run-time error that’s generated if there isn’t enough memory
available to allocate the structure. For more information, see
Delphi’s help topic “RTL Exceptions.” For now however,
we’ll overlook this shortcoming so that we can proceed with
learning about these Windows data structures.

Start Walking
Basically, all the Walkers work in the same manner — once a
pointer is initialized, the walk begins. To begin the walk, we
must get the first structure in the list. In this case, the call to
ClassFirst accomplishes this. If the call is successful, we enter
a while loop that first adds an entry to a TListBox and then
tries to again initialize the Class data structure (pointed to by
pOurClassEntry) with a call to ClassNext.

When the call to ClassNext returns False, the walk is over.
The title row above the list box is the value of the Caption
property of the TGroupBox that is the parent of the TListBox.
Finally, the memory allocated for the TClassEntry structure is
Delphi Informant April 1996 41

Figure 2: The Class Walker.

The API Calls

Figure 3 (Top): The Task Walker. Figure 4 (Middle): The
Module Walker. Figure 5 (Bottom): The Global Walker.
freed in the OnDestroy event handler (the FormDestroy
method). This is accomplished with the call to Destroy.

When you review the code in the other units, you’ll see that the
Class, Task (see Figure 3), and Module (see Figure 4) Walkers
work the same way. The Global Walker, however, is different.

The Global Walker
The Global Walker (see Figure 5) presents us with some inter-
esting challenges. As Charles Petzold points out in his book,
Programming Windows 3.1, “global memory ranges from the
spot where MS-DOS first loads Windows to the top of avail-
able memory.” This means that Windows is itself running in
its global memory (as the Global Walker demonstrates).

Windows manages blocks of memory on the global heap known
as segments or items. As the name implies, the Global Walker will
walk the global heap to document these segments. The difficulty
comes from trying to walk the heap without modifying it.

As you may know, Delphi’s TListBox allocates memory to store
strings on the global heap. Thus, each call to TListBox.Add
allocates some additional memory from the global heap. This
means as we try to walk the global heap and add a formatted
string to a listbox (as we did with the other Walkers), the heap
itself is changing. Particularly since segments can be discard-
able, moveable, etc., allocating memory during the walk ren-
ders the results of a global heap walk useless.

Perseus to the Rescue
This problem was overcome by using Perseus, a virtual listbox
shareware component written by Sebastian Modersohn. [A trial
version of Perseus is included in the .ZIP file that contains the
Walker program. See end of article for details.] Perseus’ installa-
tion instructions are in its help file. Essentially, however, it
(VListBox.DCU) is installed just as any other component.

Perseus is not a descendent of Delphi’s TListBox, and there-
fore does not use a TString variable to manage the strings it
displays. In fact, it’s the programmer’s responsibility to supply
the strings to Perseus, whose job in turn, is to efficiently dis-
play those strings.
And it does so superbly. While developing Walker on a com-
puter with 20MB of memory, I constantly exhausted available
memory trying to use a TListBox component while working on
the Global Walker module. This was never a problem when
using Perseus, as it can handle up to 2,147,483,647 strings.

Picking the Right Event
All memory allocation is completed in the FormShow method
(see Listing Six beginning on page 45). Since we want to walk
the global heap, we want to grab the items on the heap at the
last possible moment after all allocation has been completed.
Since Delphi allocates memory for forms and child controls in
Delphi Informant April 1996 42

The API Calls

Figure 6 (Top):
Double-click an item to
view the segment’s
memory dump.
Figure 7 (Left): The
Resources page of the
TTabbedNotebook.
the FormCreate method, we should perform the Global walk in
the FormShow method after the form that is used to show the
contents of the heap has itself been allocated.

The sequence of the allocation is important. First, a
TStringList is created and initialized. GlobalItemString is used
to manage the strings that Perseus displays. Memory is allo-
cated by calling TStringList’s Add method in a for loop that
iterates MaxGlobalItems times.

Next, a TGlobalEntry structure and a pointer are initialized,
and finally, a TGlobalInfo structure and pointer are initial-
ized. (Remember, this memory must also be deallocated. This
is done in the FormDestroy method.) The TGlobalInfo struc-
ture is initialized last because we’ll need a count of all items
on the global heap. Since the strings being managed by
TStringList are also allocated in global memory, the items
they occupy must also be included in the count.

Now that all the memory needed for this module has been
allocated, the global walk can begin. We use the same while
loop construct to walk the global heap as we have used in
the other Walkers. As the loop is executing, one string is
being formatted with information about each item on the
heap. Notice that the Add method is not being called. Since
memory was previously allocated, we can use a simple
assignment statement. As before, when a call to GlobalNext
fails, the walk is complete.

Finally, Perseus must display the strings formatted during the
walk and initialize a couple of title strings. For Perseus to
handle the display of the strings managed by the
GlobalItemString object, Perseus’ RowCount property must be
set to the number of strings it will need to display. Since that
number is equal to the number of items on the global heap,
we use the value in TGlobalInfo.wcItems. With Walker, the
TStringList.Count property could not have been used to pro-
vide this number. Remember we added MaxGlobalItems to
the string list, which of course, is not the same as the number
of actual items on the heap.

When Perseus needs a new string to display, the OnGetItem
event is fired and the string is assigned in the
VListBox1GetItem event handler method.

procedure TGlobalW.VListBox1GetItem(Sender: TVListBox;
Index: Longint; Col: Integer; var Strg: OpenString;
State: TOwnerDrawState; var Font: TFont;
var BGColor: TColor);

begin
Strg := GlobalItemString.Strings[Index];

end;

When browsing the list of items, the user can double-click on
an item to see a memory dump of the segment (see Figure 6).
Again, because of the efficiency with which Perseus displays
strings, it’s used to display the memory dump. The size of
any memory dump is limited to 64K. Note that an item on
the global heap can be larger than 64K, but a segment of
such a size would be quite rare.
The Resources Page
The Resources page (see Figure 7) of the TTabbedNotebook
component shows the currently available or used amount of
some of the more interesting Windows resources. Each time
the user clicks on the Resources tab, the values are
refreshed.

procedure TMainForm.TabbedNotebook1Click(Sender: TObject);
begin

if TabbedNotebook1.PageIndex = 1 then
GetResources;

end;

If a user is running Walker with the Resources page displayed
and wants to see updated statistics, a simple click on the R
button does the job. Since it only makes sense to refresh the
values when the Resources page is displayed, the R button is
only enabled while this page has focus. The R button’s
enabled state is handled by the OnChange event handler.

The code that actually gets the values is located in the
GetResources method in the uTlHelp unit (see Listing Seven
beginning on page 45). Two new ToolHelp data structures are
initialized here: TMemManInfo and TSysHeapInfo.
TSysHeapInfo provides the free percentage of GDI and User
resources, while TMemManInfo provides the number of virtual
pages and free virtual pages. TGlobalInfo, which was introduced
in the Global Walker module, provides information about the
total items and free items on the global heap. The “Free Mem”
and “Max Mem” values are returned by run-time Object Pascal
functions. (See Delphi online help for more details.)

Odds and Ends
A common practice among component vendors is to ship
completely working copies of their components for trial pur-
poses. Such trial components give the developer the opportu-
nity to fully evaluate the component. There is just one “catch”
Delphi Informant April 1996 43

The API Calls
— trial components will only work while Delphi is running.
This is true for Perseus, the virtual listbox used by Walker.

So how does the component know that Delphi is running?
There is no IsDelphiRunning function. At least one way to
find out if Delphi is loaded is to use the ToolHelp function,
ModuleFindName. Walker uses this technique in the
MainForm.FormShow method (see Figure 8). This is because
if a form that is using the trial version of Perseus is loaded
when Delphi is not running, Perseus will display a polite
message saying it cannot be used outside Delphi. It will then
close the application.
Karl Thompson is an independent Paradox and Delphi developer serving clients
from New York City to Philadelphia. He has been writing applications using some
vintage of Borland’s Pascal since 1984. He can be reached at (800) 242-9192,
or on the Internet at 72366.306@compuserve.com.

Figure 8: The MainForm.FormShow method detects if Delphi is
running.

procedure TMainForm.FormShow(Sender: TObject);
begin

GDI1.Enabled := False;
User1.Enabled := False;
SpeedButton4.Enabled := False;
BitBtn10.HelpContext := 0;
{ If Delphi isn’t running, disable Global Button

and menu item.
Note: Global Walk depends upon Perseus, a virtual
list box component that must be registered
separately to run when the Delphi IDE is not running. }

pOurModuleEntry := InitModuleEntry(pOurModuleEntry);
if (ModuleFindName(pOurModuleEntry,'DELPHI') = 0) then

begin
SpeedButton7.Enabled := False;
Global1.Enabled := False;

end;
Dispose(pOurModuleEntry);

end;
In the case of Walker, we did not want to prevent anyone
from using the program when Delphi was not loaded. In
the FormShow method, the code checks if Delphi is run-
ning. If not, then the Global walk button and Global menu
item are grayed. This prevents the user from selecting
Global Walk and then receiving a message saying that
Perseus is not registered, and having Walker close down.
Naturally, you can use the same technique for any trial
components that you want to ship.

If you happen to select Options | Project from the Delphi
menu, you’ll notice that the only form that is automatically
created is MainForm. All other forms are created as Walker
needs them. This saves from having to allocate memory for
the forms before they are used. It also allows Walker to
load faster. To see how a form is created/allocated manually
as needed, look at the code in each of the XXXXWalker
methods in uTlHelp.

The technique is very simple. Call Application.Create, passing it
the type of form and the variable instance of the form. Call a
procedure that will eventually call ShowModal (or Show if the
form will be disposed differently than what the examples illus-
trate). When ShowModal returns, free the memory allocated.

Why Walker, and Where to Now?
Walker came about because of an interest in learning more
about how a developing application was working in Windows.
Hopefully, if you spend some time with Walker, you’ll gain
some insight into the way that Windows works as well.

There is still a lot that can be done with this program. For
one thing, the User and GDI Walkers need to be written.
A hex dump routine could be written for all the local
heaps, and a tool could be developed for monitoring stack
space. Beyond that, Walker could be made application
specific. That is, Walker would monitor just the resources
used by an application (that is part of the purpose of the
Options page). With further development, Walker could
show the developer resources that haven’t been properly
disposed after the application terminates. If anyone makes
any of these enhancements, please send them my way!

References and Acknowledgements
A great deal of the material this article is based upon came from
the book, Undocumented Windows by Andrew Schulman, David
Maxey, and Matt Pietrek [Addison-Wesley, 1992]. I would like
to thank Yon Barrenechea who recommended this text to me,
and Peter Below for seconding the recommendation. They were
right on the money with their advice. Additional information
came from Charles Petzold’s Programming Windows 3.1
[Microsoft Press, 1992].

I’ve known about these books for a long time, but I never both-
ered to read them because I’m a Pascal/Delphi programmer at
heart (I’ve not written a line of C in 11 years) and I was put off
by their C orientation. I figured that I would just buy the
Delphi or Pascal books that interested me. This was a mistake.

Unfortunately, the topic of Windows architecture is not cov-
ered in-depth in any Pascal-specific book that I’ve encoun-
tered. So if you have even a passing interest in how Windows
works “under the hood,” pick up a copy of one or both of
these books. And don’t worry about the C code if you don’t
know C. It’s not that tough to follow. ∆

The demonstration Walker program and trial version of Perseus are
available on the Delphi Informant Works CD located in
INFORM\96\APR\DI9604KT.
Delphi Informant April 1996 44

The API Calls
Begin Listing Six — TGlobalW.FormShow
procedure TGlobalW.FormShow(Sender: TObject);

var

OK: Bool;

Counter: Longint;

begin

{ Show hourglass mouse pointer }

Screen.Cursor := crHourglass;

try

GlobalItemString := TStringList.Create;

{ Allocate the strings before! walking Global Heap }

for Counter := 0 to MaxGlobalItems do

GlobalItemString.Add('');

pOurGlobalEntry := InitGlobalEntry(pOurGlobalEntry);

pOurGlobalInfo := IniTGlobalInfo(pOurGlobalInfo);

GlobalInfo(pOurGlobalInfo);

OK := GlobalFirst(pOurGlobalEntry, Global_All);

if not (OK) then

MessageDlg('Error getting Global information...',

mtWarning, [mbOK], 0);

Counter := 0;

while OK do begin

GlobalItemString.Strings[Counter] :=

Format(' %4.4x %5x %-14s %-5d %-14s',

[pOurGlobalEntry^.hBlock,

pOurGlobalEntry^.dwBlockSize,

GetModuleNameFromHandle

(pOurGlobalEntry^.hOwner),

ord(pOurGlobalEntry^.wHeapPresent),

GetGlobalBlockType(pOurGlobalEntry^.wType,

pOurGlobalEntry^.wData)]);

inc(Counter);

OK := GlobalNext(pOurGlobalEntry, Global_All);

end;

finally

Screen.Cursor := crDefault; { Show default pointer }

end;

VListBox1.RowCount := pOurGlobalInfo^.wcItems-1;

GroupBox1.Caption :=

' Handle Size Owner LHeap Type ';

GlobalW.Caption := ' ' +

IntToStr(VListBox1.RowCount)+' Global Items Found ';

end;

End Listing Six
Begin Listing Seven — TMainForm.GetResources
procedure TMainForm.GetResources;

var

OK: Bool;

begin

Label7.Caption := format('%4.1nmb',[MemAvail/OneMb]);

Label8.Caption := format('%4.1nmb',[MaxAvail/OneMb]);

pOurSysHeapInfo := InitSysHeapInfo(pOurSysHeapInfo);

pOurMemManInfo := InitMemManInfo(pOurMemManInfo);

pOurGlobalInfo := InitGlobalInfo(pOurGlobalInfo);

if SystemHeapInfo(pOurSysHeapInfo) then begin

Label5.Caption :=

Format('%d%%',[pOurSysHeapInfo^.wGDIFreePercent]);

Label6.Caption :=

Format('%d%%',[pOurSysHeapInfo^.wUserFreePercent]);

end

else begin

Label5.Caption := 'N/A';

Label6.Caption := 'N/A';

end;

if MemManInfo(pOurMemManInfo) then begin

Label14.Caption :=

Format('%d',[pOurMemManInfo^.dwTotalPages]);

Label16.Caption :=

Format('%d',[pOurMemManInfo^.dwFreePages]);

end

else begin

Label14.Caption := 'N/A';

Label16.Caption := 'N/A';

end;

if GlobalInfo(pOurGlobalInfo) then begin

Label12.Caption :=

Format('%d',[pOurGlobalInfo^.wcItemsFree]);

Label13.Caption :=

Format('%d',[pOurGlobalInfo^.wcItemsLRU]);

end

else begin

Label12.Caption := 'N/A';

Label13.Caption := 'N/A';

end;

Dispose(pOurGlobalInfo);

Dispose(pOurMemManInfo);

Dispose(pOurSysHeapInfo);

end;

End Listing Seven
Delphi Informant April 1996 45

DFL’s Light Lib Series
Two Delphi VCLs That Know What to Do with Data

New & Used

By Douglas Horn
A s Delphi’s popularity among developers skyrockets, many third-party soft-
ware developers are taking notice. These developers of programming tools

are now releasing VCL controls designed for, and written in, Delphi. Such
native VCLs are generally more compatible and easier to implement in Delphi
applications than VBX and DLL controls that are designed to be used by any
number of development platforms.
Two new Delphi-specific controls are now
available from DFL Software, Inc. These
controls, Light Lib Images and Light Lib
Business, promise powerful, nearly effortless
implementation of data-aware image han-
dling and business graphing, respectively.
Although each has a few minor drawbacks,
the components provide interesting and
needed solutions to problems that many
Delphi developers may be experiencing.

DFL’s tools also support other programming
environments, such as C/C++, Visual Basic,
and CA-Visual Objects. However, unlike
many other products that try to cover all the
bases, DFL has actually provided language-
specific components and class libraries for
each environment, and the standard and pro-
fessional editions include the source code to
the VCL components. The professional edi-
tions are reviewed here.

Installation
While the people at DFL tried to make the
Light Lib components as easy as possible to
install and use, the installation is in fact
rather puzzling, especially for users who want
to use both of the separately sold compo-
nents. No printed documentation comes
with the components. This does not hurt the
product because the online help files are very
strong, and they’re tied directly into Delphi’s
help system. Although this review is very
much in favor of this trend in documenta-
tion, its Achilles’ heel presents itself when the
installation routine becomes unclear and
there is no documentation to reference.
Whether installing the Business or Images
package, when the installation routine begins,
it unexpectedly informs the user that, “The
following Light Lib components will be
installed: Light Lib Objects, Light Lib Images,
Light Lib Business, Light Lib Multimedia.”

The program then asks for the serial number
and hard disk location for installation, then
asks what versions to install: Delphi,
Microsoft Foundation Classes, Microsoft
Visual Basic, and/or CA-Visual Objects.

The peculiarity begins after the installation,
when not only the Business (or Images)
tool is installed, as the user intended, but
also an evaluation version of the other
VCL. If the user tries to install the other
VCL into the same directory in order to
delete the evaluation version and save some
disk space, he or she is informed that the
existing directory will be deleted. Actually,
the program will only overwrite the evalua-
tion versions, but without some sort of
documentation, the user is left wondering.

Apart from this quirk, the installation rou-
tine gets most of the job done (albeit slow-
ly). After the necessary files are installed,
the user is instructed how to merge the
Light Lib and Delphi help files, and how
to add the new controls to Delphi’s
Component Palette. The Light Lib tools
are added to their own page of the
Component Palette, but using standard
Delphi commands, they can be moved
anywhere the user chooses.
Delphi Informant April 1996 46

New & Used
Light Lib Images
The Images VCL consists of a single component,
TImageWindow. It contains an area for displaying images,
and a toolbar that allows users to access and manipulate those
images. As Delphi developers would expect, this toolbar can
be configured or concealed altogether. The component’s inte-
grated scrollbars and progress gauge can also be hidden.

TImageWindow allows a wide range of image operations, includ-
ing: scanning or opening existing images; zooming; scaling;
rotating and flipping; dithering; and printing. The component
also handles conversion between any of its supported image for-
mats. The Standard Edition supports BMP, PCX, TGA, TIF,
and PNG. (The public domain PNG format replaces the wide-
spread but proprietary GIF format.) The Professional Edition
adds GIF, JPG, and Light Lib’s own BLOb format.

Using TImageWindow as a standard image viewing compo-
nent is useful, but not particularly ground-breaking. Much
more interesting is the fact that TImageWindow is a data-
aware component. Using its DataSource and DataField prop-
erties, developers can attach TImageWindow to a database just
as they would Delphi’s native DBImage component.
However, by using the TImageWindow, developers can access
images from any of the supported formats, or from TWAIN
(Technology Without An Interesting Name — no kidding!)
compliant scanners. This is an excellent feature for databases
that require a large number of images (see Figure 1).

The traditional method of entering images into a TDBImage
component uses the Windows Clipboard to cut and paste
them into a database. The TImageWindow component elimi-
nates this requirement and makes image-intensive databases
easier to use and implement in Delphi.

It does have a shortcoming, however, in that images must be
saved to a Binary type field rather than a Graphic type field
(in Paradox for Windows tables). Also, to save an image to
the database, the TImageWindow’s Save button must be
pressed. The more Delphi-esque way of handling this would
be to automatically update the image when the record is post-
ed. In fact, this can be added programmatically by trapping
the Post procedure and calling TImageWindow’s Save method.
However, the documentation does not mention this possibili-
ty, so developers are on their own.
Figure 1:
Light Lib Images’
TImageWindow
component allows Delphi
developers
to scan and import
images into a
database.
This flaw aside, the VCL’s native BLOb (Binary Large
Object) handling is very useful for storing large numbers of
images. TImageWindow offers three choices for BLOb com-
pression: none, speed-optimized, and size-optimized.

Unfortunately, because of the proprietary format and the
need to use Binary fields rather than Graphic fields, the Light
Lib BLObs are not compatible with existing image BLObs in
Paradox tables. TImageWindow can write and retrieve its own
BLObs from Paradox tables, but cannot read those that have
been input using TDBImage components. The reverse is also
true of TDBImage components and Light Lib BLOb images.
Although DFL says this will be fixed in future releases, users
of existing databases must re-enter all their database images if
they use the Light Lib component rather than Delphi’s.

Light Lib Images includes a few other features that add to its
usability. The first is a stripping algorithm that divides images
into 32K memory blocks before processing. The result is faster
loading and display than is available in many other image view-
ers. Even large JPEG images load quickly. The component also
takes advantage of what it calls “intelligent dithering” to
improve image quality. This allows users to save hi-color images
as 16-color images with surprisingly little image degradation.

Although Light Lib Images is a Delphi-specific VCL, in some
areas it strays from some of Delphi’s established norms, to the
chagrin of Delphi users. For example, the ShowToolbar prop-
erty would best be implemented as a nested property, much
as TDBNavigator’s VisibleButtons property is. Instead, double-
clicking the ShowToolbar property calls a dialog box with
numerous check boxes (see Figure 2).

While functional, this variance from the norm does stand
out. More troublesome is the fact that the ImageName and
ImagePath properties used to set the image (when not in data-
aware mode) do not call Open File dialog boxes. Rather than
browsing for the desired file, the developer must manually
add the path and file name.

Light Lib Business
As with Light Lib Images, Light Lib Business consists of a
single data-aware component. The component,
TGraphWindow, has one claim to fame — it turns live data
into live graphs (see Figure 3). For example, developers can
connect a table or query to a DataSource with a DBNavigator
component. Adding a TGraphWindow component will then
allow them to scroll through their database, viewing graphs of
their data in real time.

TGraphWindow has many strengths, but a few weaknesses
as well. The graphing is surprisingly quick — fast enough
to render complex graphs in the time it takes to do a basic
screen redraw. In addition, the graphs are fully end-user
configurable by default. When a user clicks on a section of
the graph, the component is intelligent enough to deter-
mine what section has been selected (vertical or horizontal
axes background, bar, etc.), and open the dialog box con-
trolling that section.
Delphi Informant April 1996 47

Douglas Horn is a free lance writer and computer consultant in
Seattle, WA. He specializes in multilingual applications, particu-
larly those using Japanese and other Asian languages. He can be
reached via e-mail at horn@halcyon.com.

Figure 3: Light Lib Business (Professional Edition) allows 2D and
3D line and bar graphs to be combined, but would be much
improved with more graph types.

Light Lib Images is a data-aware image scanning,
viewing, and conversion VCL component. This ster-
ling tool is only slightly tarnished by its rather non-
Delphi way of doing things. It’s a vast improvement
over Delphi’s own TDBImage component, making
image-intensive database development a real pos-
sibility in Delphi.

Price: VCL only (no source code) US$149;
Standard Edition US$295; Professional Edition
US$495.

Light Lib Business offers data-aware graphing in
Delphi database applications. This Delphi VCL
offers fast graphing, and can be connected to
tables and queries via the DataSource property.
The current version could be improved with a wider
variety of graph types.

Price: VCL only (no source code) US$149;
Standard Edition US$249; Professional Edition
US$449.

DFL Software, Inc.
55 Eglinton Avenue East, Suite 208
Toronto, Ontario, Canada M4P 1G8

Voice: (416) 487-2660
Fax: (416) 487-3656
BBS: (416) 487-4041
E-Mail: Internet: tech@dfl.com
CompuServe: GO DFLSW
Web Site: http://www.dfl.com

Figure 2: The Light Lib VCLs behave in a non-Delphi-esque way.
This dialog box, for example, would be more appropriate as a
nested property on the Object Inspector.

New & Used
The TGraphWindow component includes a toolbar, which
the developer can configure or hide. Using the
DialogAccess property, the six graph-configuration dialog
boxes can be set as either accessible or inaccessible. Other
nice features include auto-scaling and auto-sizing of
graphs, the ability to add and change graph legends, and
the ability to modify graph scale.

One excellent feature of TGraphWindow is its ability to save
graphs as BLObs that can then be saved to disk or to a data-
base. These BLObs encapsulate the attributes of the graph so
that future users can see the data exactly as it was first pre-
sented, without having to reformat the graph.

Light Lib Business shares some minor flaws with Light Lib
Images, but its major drawback is the number of graph
types it offers. The standard
version includes bar, line,
pie, and stacked graphs,
which may be either two-
or three-dimensional, filled
or non filled. The
Professional Edition allows
mixed line and bar graphs,
and stock tracking graphs.
Still, this variety is rather
sparse compared to many
packages on the market.

The graphs supplied do
cover a wide range of situa-
tions, but simply are not
numerous enough to satisfy
the sophisticated graphing
needs of many end-users.

The Rest
One real advantage the
Light Lib tools offer is that
they include complete
source code to the VCL
components. In point of

fact, these components are actually very complex Pascal
wrappers that interface with Light Lib’s object-oriented
DLL, the source code for which is not provided.

However, the source code that developers really need is avail-
able. The primary PAS file for Light Lib Business, for example,
contains over 6,500 lines of code. As the source code is fairly
well documented, many of these lines are program comments.

DFL’s technical support line is a toll call, but is not likely
to leave customers stuck in voice mail, and the technical
support personnel do a good job of solving problems.
Technical support is also available via fax, CompuServe,
DFL’s BBS, and the World Wide Web. DFL issues online
upgrades free of charge to users. (According to one DFL
representative, many of the concerns addressed in this
review will be resolved in upcoming online releases.)

Light Lib Images could be a real godsend to anyone develop-
ing image-intensive databases in Delphi. The product’s data-
aware and BLOb compression capabilities make it a natural
choice for such applications. As a graphing tool, Light Lib
Business is short on graph types. However, its ability to tie in
seamlessly with Delphi’s DataSource property make it a
strong contender in the Delphi graphics world. ∆
Delphi Informant April 1996 48

File | New
Directions / Commentary

It Doesn’t Cure the Common Cold
Don’t believe everything you read. Not only will the Web not cure the common cold, it is not about to replace most
client/server applications either. Listening to some industry prognosticators, however, you would think that we might as

well trade in our Pentiums for Internet terminals. The argument is that you will soon forget about running applications local-
ly, opting instead for programs that arrive courtesy of the Web. I beg to differ. A maturing PC marketplace is moving towards
“enabling” technologies, not “replacing” technologies. As with the local area network in the 1980s, the Web should be consid-
ered an extension of your local operating system, not as its successor. After all, the whole PC revolution brought decentraliza-
tion to the computer world; I find it a rather cheeky notion that we would ever tolerate a return to a centralized framework.
What then does the Web mean to you
as a Delphi developer? If it will not
replace your desktop, is it important to
pay attention to? Definitely. The Web
holds an opportunity to reach domains
that mainstream desktop and client/serv-
er applications would never work in.
Therefore, rather than making your
Delphi programming skills obsolete, the
Web offers an occasion for you to use
those talents in new areas. Savvy devel-
opers will embrace the Web, carefully
deciding when and how to use it as a
development environment.

Intoxicating Connectivity. While its
global connectivity is intoxicating, the
Web is suited for a relatively narrow genre
of applications. But within these camps,
no other technology gives you more
“bang for the buck.” Perhaps the most
striking case is an application that needs
to reach an external and diverse user base.
Some examples include:

Disseminating information. FedEx illus-
trates the Web at its finest with its
Package Tracking system (http://www.-
fedex.com/track_it.html). No matter who
you are, if you have access to the Web,
you can find out the status of a package
you sent.

Gathering information. Head hunters
and placement firms provide an example
of how the Web can be used to allow
potential employees or contractors to sub-
mit a resume or employment application
via the Web.

Providing a direct sales line to consumers.
Web applications provide companies a
direct sales line to its customers. For intan-
gible goods like software, the Web serves as
a store front as well as the delivery channel.
For tangible goods like Godiva chocolates
(http://www.godiva.com), a Web applica-
tion offers a convenient alternative to visit-
ing a retail store or ordering by phone.
Providing an alternative advertising medi-
um. Over the past six months, you have
probably begun to see ads pop up every-
where on the Web. Just how effective the
Web is as an advertising medium remains to
be determined, but I suspect it will do well
at reaching targeted audiences. While Web
advertising is often static HTML pages,
there will be an ever increasing number of
advertising-oriented applications on the way.

A second area in which the Web excels as
an application environment is in Intranets.
Intranets use essentially the same plumbing
as the Internet, but they are private —
restricted to an organization or groups with-
in a company. These systems are ideal for
Fortune 500 or multinational companies
that want to improve corporate communi-
cations within the face of geographical and
multi-platform challenges. Not only can
Intranets serve as a corporate mouth organ,
they also provide a fertile environment for
groupware applications (à la Lotus Notes).

Without the Web as a backdrop, you
really have no practical way of using Delphi
to develop solutions in these realms.

Strings Attached. The use of the Web as
an application environment is convincing
when you need to appeal to a wide or
diverse audience, but it is not without a
price. Quite literally, Web applications have
strings attached to them: they rely on a syn-
chronous means of communication in order
to work. Without a connection, you cannot
run the application. However, not only are
most business PCs still not connected to the
Web, but there are many contexts in which
that scenario just does not work. For exam-
ple, an application for a remote salesperson’s
notebook is likely to involve distributed
data. But without mature and affordable
wireless technology, the best solution
remains asynchronous replication with the
home office, not the Web.

Web applications also cannot match the
sophisticated user interfaces that Delphi
and other visual development tools can
provide. Any HTML-based application has
a meager supply of UI controls available to
them. Even future enhancements to the
HTML language will not anytime soon
catch up to a Windows 95 Treeview or
Listview control. Perhaps as Java visual
tools like Borland’s Latte or Symantec’s
Espresso begin to perk, you will begin to
see better UIs available across the Web. But
even if they can provide the presentation
depth and richness that Windows users are
now demanding, such a solution would
come at a cost: the greater the complexity
of a Java application, the longer it will take
to download onto the client.
Further, Web applications are ultimately
dependent on the speed of the transmis-
sion line. A direct or ISDN connection to
the Internet may be becoming ubiquitous
for Fortune 100 companies, but most
small- to medium-size businesses continue
to use 14.4 or 28.8 baud access to the
Web. And even if you have a blazingly fast
connection, heavy network traffic can
plague application performance.
Therefore, when designing Web applica-
tions, you are often forced to think in
terms of simplicity, compromising usabili-
ty and high performance to maximize your
use of limited bandwidth.

Shed the hype. Look at the Web realisti-
cally. The Web offers newfound power, but
it is not our panacea. Just like other revolu-
tionary technology advances that came
before it, the Web augments, not replaces,
our development environment.

Richard Wagner

Richard Wagner is the Chief Technical
Officer of Acadia Software in Boston,
MA. He welcomes your comments at
rwagner@acadians.com.
Delphi Informant April 1996 49

	Table of Contents
	Symposium
	Delphi Tools
	Component Building Tool for Delphi Updated
	SCT Associates Releases New Delphi Reporting Component
	Visual Components Updates to Include OCX Custom Controls
	New VCL/DLL Provides a Financial Calculator

	NewsLine
	Borland Outlines Phased Internet and Intranet Strategies
	Borland Focuses on Client/Server Market
	Visigenic to Develop ODBC Driver for Borland’s InterBase
	Computer Systems Advisers Bring Data Modeling to Delphi 2.0
	Borland’s New C++ 5.0 for Windows 95, Windows NT, and Java
	Delphi 2.0 Information on the Internet
	Borland Ships New Paradox 7 Runtime, Client/Server, and Developer Tools
	Delphi Developers Conference Set for May
	Borland Reports a Profit in Third Quarter Fiscal Results
	Java 1.0 Available for Download
	InstallShield Provides Software Deployment Toolkit for Borland C++

	Working in Streams (without Getting Wet)
	Into the Stream
	BLOb Streams to the Rescue
	MemoToList: Reading Memo Fields into Memory
	ListToMemo: Writing Memo Fields to a Table
	Conclusion

	PQA: Part II
	A Quick Review
	Expanding and Encapsulating the Tool Kit
	Encapsulating the Test Driver
	Testing More Complicated Functions
	QA Impact on System Design
	Comparing Log Files
	Conclusion
	Listing One — UT1QA.PAS
	Listing Two — CM1Vague.PAS

	Sharing Components
	Sharing Objects between Forms in Delphi 1.0
	Building Form1
	Building Form2
	Sharing Event Handlers
	Sharing Objects between Forms in Delphi 2.0
	Using Data Modules
	Conclusion
	Listing Three — Unit1.PAS
	Listing Four — Unit2.PAS

	Design for Upsizing
	A Property Value Problem
	A TQuery Problem
	TDatabase: Easing Migration to C/S
	Conclusion

	The Readers Speak
	Product of the Year
	Best Delphi Book
	Best VCL
	Best VBX
	Best Database Server
	Best Database CASE Tool
	Best Installation Software
	Best Training
	InfoPower Selected as Product of the Year

	Best Reporting Tool
	Best Version Control
	Best Delphi Add-In
	Best DLL
	Best Windows Help Authoring Tool
	InterBase Emerges from the Shadows

	Thank You

	DLLs: Part II
	The LTrimStr Function
	The RTrimStr Function
	The StripStr Function
	Using the XString Unit
	Exporting String Functions
	Looking Ahead
	Listing Five — The XString Unit

	Who Owes Whom?
	The Scenario
	Operation
	Design Considerations
	Implementation
	Conclusion

	A Walk on the Wild Side
	Some Terms Defined
	Walker’s Structure
	Module, Task, and Class Walkers
	Start Walking
	The Global Walker
	Perseus to the Rescue
	Picking the Right Event
	The Resources Page
	Odds and Ends
	Why Walker, and Where to Now?
	References and Acknowledgements
	Listing Six — TGlobalW.FormShow
	Listing Seven — TMainForm.GetResources

	DFL’s Light Lib Series
	Installation
	Light Lib Images
	Light Lib Business
	The Rest

	File | New

